41 resultados para High-order harmonics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Durante los últimos años la tendencia en el sector de las telecomunicaciones ha sido un aumento y diversificación en la transmisión de voz, video y fundamentalmente de datos. Para conseguir alcanzar las tasas de transmisión requeridas, los nuevos estándares de comunicaciones requieren un mayor ancho de banda y tienen un mayor factor de pico, lo cual influye en el bajo rendimiento del amplificador de radiofrecuencia (RFPA). Otro factor que ha influido en el bajo rendimiento es el diseño del amplificador de radiofrecuencia. Tradicionalmente se han utilizado amplificadores lineales por su buen funcionamiento. Sin embargo, debido al elevado factor de pico de las señales transmitidas, el rendimiento de este tipo de amplificadores es bajo. El bajo rendimiento del sistema conlleva desventajas adicionales como el aumento del coste y del tamaño del sistema de refrigeración, como en el caso de una estación base, o como la reducción del tiempo de uso y un mayor calentamiento del equipo para sistemas portátiles alimentados con baterías. Debido a estos factores, se han desarrollado durante las últimas décadas varias soluciones para aumentar el rendimiento del RFPA como la técnica de Outphasing, combinadores de potencia o la técnica de Doherty. Estas soluciones mejoran las prestaciones del RFPA y en algún caso han sido ampliamente utilizados comercialmente como la técnica de Doherty, que alcanza rendimientos hasta del 50% para el sistema completo para anchos de banda de hasta 20MHz. Pese a las mejoras obtenidas con estas soluciones, los mayores rendimientos del sistema se obtienen para soluciones basadas en la modulación de la tensión de alimentación del amplificador de potencia como “Envelope Tracking” o “EER”. La técnica de seguimiento de envolvente o “Envelope Tracking” está basada en la modulación de la tensión de alimentación de un amplificador lineal de potencia para obtener una mejora en el rendimiento en el sistema comparado a una solución con una tensión de alimentación constante. Para la implementación de esta técnica se necesita una etapa adicional, el amplificador de envolvente, que añade complejidad al amplificador de radiofrecuencia. En un amplificador diseñado con esta técnica, se aumentan las pérdidas debido a la etapa adicional que supone el amplificador de envolvente pero a su vez disminuyen las pérdidas en el amplificador de potencia. Si el diseño se optimiza adecuadamente, puede conseguirse un aumento global en el rendimiento del sistema superior al conseguido con las técnicas mencionadas anteriormente. Esta técnica presenta ventajas en el diseño del amplificador de envolvente, ya que el ancho de banda requerido puede ser menor que el ancho de banda de la señal de envolvente si se optimiza adecuadamente el diseño. Adicionalmente, debido a que la sincronización entre la señal de envolvente y de fase no tiene que ser perfecta, el proceso de integración conlleva ciertas ventajas respecto a otras técnicas como EER. La técnica de eliminación y restauración de envolvente, llamada EER o técnica de Kahn está basada en modulación simultánea de la envolvente y la fase de la señal usando un amplificador de potencia conmutado, no lineal y que permite obtener un elevado rendimiento. Esta solución fue propuesta en el año 1952, pero no ha sido implementada con éxito durante muchos años debido a los exigentes requerimientos en cuanto a la sincronización entre fase y envolvente, a las técnicas de control y de corrección de los errores y no linealidades de cada una de las etapas así como de los equipos para poder implementar estas técnicas, que tienen unos requerimientos exigentes en capacidad de cálculo y procesamiento. Dentro del diseño de un RFPA, el amplificador de envolvente tiene una gran importancia debido a su influencia en el rendimiento y ancho de banda del sistema completo. Adicionalmente, la linealidad y la calidad de la señal de transmitida deben ser elevados para poder cumplir con los diferentes estándares de telecomunicaciones. Esta tesis se centra en el amplificador de envolvente y el objetivo principal es el desarrollo de soluciones que permitan el aumento del rendimiento total del sistema a la vez que satisfagan los requerimientos de ancho de banda, calidad de la señal transmitida y de linealidad. Debido al elevado rendimiento que potencialmente puede alcanzarse con la técnica de EER, esta técnica ha sido objeto de análisis y en el estado del arte pueden encontrarse numerosas referencias que analizan el diseño y proponen diversas implementaciones. En una clasificación de alto nivel, podemos agrupar las soluciones propuestas del amplificador de envolvente según estén compuestas de una o múltiples etapas. Las soluciones para el amplificador de envolvente en una configuración multietapa se basan en la combinación de un convertidor conmutado, de elevado rendimiento con un regulador lineal, de alto ancho de banda, en una combinación serie o paralelo. Estas soluciones, debido a la combinación de las características de ambas etapas, proporcionan un buen compromiso entre rendimiento y buen funcionamiento del amplificador de RF. Por otro lado, la complejidad del sistema aumenta debido al mayor número de componentes y de señales de control necesarias y el aumento de rendimiento que se consigue con estas soluciones es limitado. Una configuración en una etapa tiene las ventajas de una mayor simplicidad, pero debido al elevado ancho de banda necesario, la frecuencia de conmutación debe aumentarse en gran medida. Esto implicará un bajo rendimiento y un peor funcionamiento del amplificador de envolvente. En el estado del arte pueden encontrarse diversas soluciones para un amplificador de envolvente en una etapa, como aumentar la frecuencia de conmutación y realizar la implementación en un circuito integrado, que tendrá mejor funcionamiento a altas frecuencias o utilizar técnicas topológicas y/o filtros de orden elevado, que permiten una reducción de la frecuencia de conmutación. En esta tesis se propone de manera original el uso de la técnica de cancelación de rizado, aplicado al convertidor reductor síncrono, para reducir la frecuencia de conmutación comparado con diseño equivalente del convertidor reductor convencional. Adicionalmente se han desarrollado dos variantes topológicas basadas en esta solución para aumentar la robustez y las prestaciones de la misma. Otro punto de interés en el diseño de un RFPA es la dificultad de poder estimar la influencia de los parámetros de diseño del amplificador de envolvente en el amplificador final integrado. En esta tesis se ha abordado este problema y se ha desarrollado una herramienta de diseño que permite obtener las principales figuras de mérito del amplificador integrado para la técnica de EER a partir del diseño del amplificador de envolvente. Mediante el uso de esta herramienta pueden validarse el efecto del ancho de banda, el rizado de tensión de salida o las no linealidades del diseño del amplificador de envolvente para varias modulaciones digitales. Las principales contribuciones originales de esta tesis son las siguientes: La aplicación de la técnica de cancelación de rizado a un convertidor reductor síncrono para un amplificador de envolvente de alto rendimiento para un RFPA linealizado mediante la técnica de EER. Una reducción del 66% en la frecuencia de conmutación, comparado con el reductor convencional equivalente. Esta reducción se ha validado experimentalmente obteniéndose una mejora en el rendimiento de entre el 12.4% y el 16% para las especificaciones de este trabajo. La topología y el diseño del convertidor reductor con dos redes de cancelación de rizado en cascada para mejorar el funcionamiento y robustez de la solución con una red de cancelación. La combinación de un convertidor redactor multifase con la técnica de cancelación de rizado para obtener una topología que proporciona una reducción del cociente entre frecuencia de conmutación y ancho de banda de la señal. El proceso de optimización del control del amplificador de envolvente en lazo cerrado para mejorar el funcionamiento respecto a la solución en lazo abierto del convertidor reductor con red de cancelación de rizado. Una herramienta de simulación para optimizar el proceso de diseño del amplificador de envolvente mediante la estimación de las figuras de mérito del RFPA, implementado mediante EER, basada en el diseño del amplificador de envolvente. La integración y caracterización del amplificador de envolvente basado en un convertidor reductor con red de cancelación de rizado en el transmisor de radiofrecuencia completo consiguiendo un elevado rendimiento, entre 57% y 70.6% para potencias de salida de 14.4W y 40.7W respectivamente. Esta tesis se divide en seis capítulos. El primer capítulo aborda la introducción enfocada en la aplicación, los amplificadores de potencia de radiofrecuencia, así como los principales problemas, retos y soluciones existentes. En el capítulo dos se desarrolla el estado del arte de amplificadores de potencia de RF, describiéndose las principales técnicas de diseño, las causas de no linealidad y las técnicas de optimización. El capítulo tres está centrado en las soluciones propuestas para el amplificador de envolvente. El modo de control se ha abordado en este capítulo y se ha presentado una optimización del diseño en lazo cerrado para el convertidor reductor convencional y para el convertidor reductor con red de cancelación de rizado. El capítulo cuatro se centra en el proceso de diseño del amplificador de envolvente. Se ha desarrollado una herramienta de diseño para evaluar la influencia del amplificador de envolvente en las figuras de mérito del RFPA. En el capítulo cinco se presenta el proceso de integración realizado y las pruebas realizadas para las diversas modulaciones, así como la completa caracterización y análisis del amplificador de RF. El capítulo seis describe las principales conclusiones de la tesis y las líneas futuras. ABSTRACT The trend in the telecommunications sector during the last years follow a high increase in the transmission rate of voice, video and mainly in data. To achieve the required levels of data rates, the new modulation standards demand higher bandwidths and have a higher peak to average power ratio (PAPR). These specifications have a direct impact in the low efficiency of the RFPA. An additional factor for the low efficiency of the RFPA is in the power amplifier design. Traditionally, linear classes have been used for the implementation of the power amplifier as they comply with the technical requirements. However, they have a low efficiency, especially in the operating range of signals with a high PAPR. The low efficiency of the transmitter has additional disadvantages as an increase in the cost and size as the cooling system needs to be increased for a base station and a temperature increase and a lower use time for portable devices. Several solutions have been proposed in the state of the art to improve the efficiency of the transmitter as Outphasing, power combiners or Doherty technique. However, the highest potential of efficiency improvement can be obtained using a modulated power supply for the power amplifier, as in the Envelope Tracking and EER techniques. The Envelope Tracking technique is based on the modulation of the power supply of a linear power amplifier to improve the overall efficiency compared to a fixed voltage supply. In the implementation of this technique an additional stage is needed, the envelope amplifier, that will increase the complexity of the RFPA. However, the efficiency of the linear power amplifier will increase and, if designed properly, the RFPA efficiency will be improved. The advantages of this technique are that the envelope amplifier design does not require such a high bandwidth as the envelope signal and that in the integration process a perfect synchronization between envelope and phase is not required. The Envelope Elimination and Restoration (EER) technique, known also as Kahn’s technique, is based on the simultaneous modulation of envelope and phase using a high efficiency switched power amplifier. This solution has the highest potential in terms of the efficiency improvement but also has the most challenging specifications. This solution, proposed in 1952, has not been successfully implemented until the last two decades due to the high demanding requirements for each of the stages as well as for the highly demanding processing and computation capabilities needed. At the system level, a very precise synchronization is required between the envelope and phase paths to avoid a linearity decrease of the system. Several techniques are used to compensate the non-linear effects in amplitude and phase and to improve the rejection of the out of band noise as predistortion, feedback and feed-forward. In order to obtain a high bandwidth and efficient RFPA using either ET or EER, the envelope amplifier stage will have a critical importance. The requirements for this stage are very demanding in terms of bandwidth, linearity and quality of the transmitted signal. Additionally the efficiency should be as high as possible, as the envelope amplifier has a direct impact in the efficiency of the overall system. This thesis is focused on the envelope amplifier stage and the main objective will be the development of high efficiency envelope amplifier solutions that comply with the requirements of the RFPA application. The design and optimization of an envelope amplifier for a RFPA application is a highly referenced research topic, and many solutions that address the envelope amplifier and the RFPA design and optimization can be found in the state of the art. From a high level classification, multiple and single stage envelope amplifiers can be identified. Envelope amplifiers for EER based on multiple stage architecture combine a linear assisted stage and a switched-mode stage, either in a series or parallel configuration, to achieve a very high performance RFPA. However, the complexity of the system increases and the efficiency improvement is limited. A single-stage envelope amplifier has the advantage of a lower complexity but in order to achieve the required bandwidth the switching frequency has to be highly increased, and therefore the performance and the efficiency are degraded. Several techniques are used to overcome this limitation, as the design of integrated circuits that are capable of switching at very high rates or the use of topological solutions, high order filters or a combination of both to reduce the switching frequency requirements. In this thesis it is originally proposed the use of the ripple cancellation technique, applied to a synchronous buck converter, to reduce the switching frequency requirements compared to a conventional buck converter for an envelope amplifier application. Three original proposals for the envelope amplifier stage, based on the ripple cancellation technique, are presented and one of the solutions has been experimentally validated and integrated in the complete amplifier, showing a high total efficiency increase compared to other solutions of the state of the art. Additionally, the proposed envelope amplifier has been integrated in the complete RFPA achieving a high total efficiency. The design process optimization has also been analyzed in this thesis. Due to the different figures of merit between the envelope amplifier and the complete RFPA it is very difficult to obtain an optimized design for the envelope amplifier. To reduce the design uncertainties, a design tool has been developed to provide an estimation of the RFPA figures of merit based on the design of the envelope amplifier. The main contributions of this thesis are: The application of the ripple cancellation technique to a synchronous buck converter for an envelope amplifier application to achieve a high efficiency and high bandwidth EER RFPA. A 66% reduction of the switching frequency, validated experimentally, compared to the equivalent conventional buck converter. This reduction has been reflected in an improvement in the efficiency between 12.4% and 16%, validated for the specifications of this work. The synchronous buck converter with two cascaded ripple cancellation networks (RCNs) topology and design to improve the robustness and the performance of the envelope amplifier. The combination of a phase-shifted multi-phase buck converter with the ripple cancellation technique to improve the envelope amplifier switching frequency to signal bandwidth ratio. The optimization of the control loop of an envelope amplifier to improve the performance of the open loop design for the conventional and ripple cancellation buck converter. A simulation tool to optimize the envelope amplifier design process. Using the envelope amplifier design as the input data, the main figures of merit of the complete RFPA for an EER application are obtained for several digital modulations. The successful integration of the envelope amplifier based on a RCN buck converter in the complete RFPA obtaining a high efficiency integrated amplifier. The efficiency obtained is between 57% and 70.6% for an output power of 14.4W and 40.7W respectively. The main figures of merit for the different modulations have been characterized and analyzed. This thesis is organized in six chapters. In Chapter 1 is provided an introduction of the RFPA application, where the main problems, challenges and solutions are described. In Chapter 2 the technical background for radiofrequency power amplifiers (RF) is presented. The main techniques to implement an RFPA are described and analyzed. The state of the art techniques to improve performance of the RFPA are identified as well as the main sources of no-linearities for the RFPA. Chapter 3 is focused on the envelope amplifier stage. The three different solutions proposed originally in this thesis for the envelope amplifier are presented and analyzed. The control stage design is analyzed and an optimization is proposed both for the conventional and the RCN buck converter. Chapter 4 is focused in the design and optimization process of the envelope amplifier and a design tool to evaluate the envelope amplifier design impact in the RFPA is presented. Chapter 5 shows the integration process of the complete amplifier. Chapter 6 addresses the main conclusions of the thesis and the future work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A particle accelerator is any device that, using electromagnetic fields, is able to communicate energy to charged particles (typically electrons or ionized atoms), accelerating and/or energizing them up to the required level for its purpose. The applications of particle accelerators are countless, beginning in a common TV CRT, passing through medical X-ray devices, and ending in large ion colliders utilized to find the smallest details of the matter. Among the other engineering applications, the ion implantation devices to obtain better semiconductors and materials of amazing properties are included. Materials supporting irradiation for future nuclear fusion plants are also benefited from particle accelerators. There are many devices in a particle accelerator required for its correct operation. The most important are the particle sources, the guiding, focalizing and correcting magnets, the radiofrequency accelerating cavities, the fast deflection devices, the beam diagnostic mechanisms and the particle detectors. Most of the fast particle deflection devices have been built historically by using copper coils and ferrite cores which could effectuate a relatively fast magnetic deflection, but needed large voltages and currents to counteract the high coil inductance in a response in the microseconds range. Various beam stability considerations and the new range of energies and sizes of present time accelerators and their rings require new devices featuring an improved wakefield behaviour and faster response (in the nanoseconds range). This can only be achieved by an electromagnetic deflection device based on a transmission line. The electromagnetic deflection device (strip-line kicker) produces a transverse displacement on the particle beam travelling close to the speed of light, in order to extract the particles to another experiment or to inject them into a different accelerator. The deflection is carried out by the means of two short, opposite phase pulses. The diversion of the particles is exerted by the integrated Lorentz force of the electromagnetic field travelling along the kicker. This Thesis deals with a detailed calculation, manufacturing and test methodology for strip-line kicker devices. The methodology is then applied to two real cases which are fully designed, built, tested and finally installed in the CTF3 accelerator facility at CERN (Geneva). Analytical and numerical calculations, both in 2D and 3D, are detailed starting from the basic specifications in order to obtain a conceptual design. Time domain and frequency domain calculations are developed in the process using different FDM and FEM codes. The following concepts among others are analyzed: scattering parameters, resonating high order modes, the wakefields, etc. Several contributions are presented in the calculation process dealing specifically with strip-line kicker devices fed by electromagnetic pulses. Materials and components typically used for the fabrication of these devices are analyzed in the manufacturing section. Mechanical supports and connexions of electrodes are also detailed, presenting some interesting contributions on these concepts. The electromagnetic and vacuum tests are then analyzed. These tests are required to ensure that the manufactured devices fulfil the specifications. Finally, and only from the analytical point of view, the strip-line kickers are studied together with a pulsed power supply based on solid state power switches (MOSFETs). The solid state technology applied to pulsed power supplies is introduced and several circuit topologies are modelled and simulated to obtain fast and good flat-top pulses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

III-nitride nanorods have attracted much scientific interest during the last decade because of their unique optical and electrical properties [1,2]. The high crystal quality and the absence of extended defects make them ideal candidates for the fabrication of high efficiency opto-electronic devices such as nano-photodetectors, light-emitting diodes, and solar cells [1-3]. Nitride nanorods are commonly grown in the self-assembled mode by plasma-assisted molecular beam epitaxy (MBE) [4]. However, self-assembled nanorods are characterized by inhomogeneous heights and diameters, which render the device processing very difficult and negatively affect the electronic transport properties of the final device. For this reason, the selective area growth (SAG) mode has been proposed, where the nanorods preferentially grow with high order on pre-defined sites on a pre-patterned substrate

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stability analysis of open cavity flows is a problem of great interest in the aeronautical industry. This type of flow can appear, for example, in landing gears or auxiliary power unit configurations. Open cavity flows is very sensitive to any change in the configuration, either physical (incoming boundary layer, Reynolds or Mach numbers) or geometrical (length to depth and length to width ratio). In this work, we have focused on the effect of geometry and of the Reynolds number on the stability properties of a threedimensional spanwise periodic cavity flow in the incompressible limit. To that end, BiGlobal analysis is used to investigate the instabilities in this configuration. The basic flow is obtained by the numerical integration of the Navier-Stokes equations with laminar boundary layers imposed upstream. The 3D perturbation, assumed to be periodic in the spanwise direction, is obtained as the solution of the global eigenvalue problem. A parametric study has been performed, analyzing the stability of the flow under variation of the Reynolds number, the L/D ratio of the cavity, and the spanwise wavenumber β. For consistency, multidomain high order numerical schemes have been used in all the computations, either basic flow or eigenvalue problems. The results allow to define the neutral curves in the range of L/D = 1 to L/D = 3. A scaling relating the frequency of the eigenmodes and the length to depth ratio is provided, based on the analysis results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present contribution discusses the development of a PSE-3D instability analysis algorithm, in which a matrix forming and storing approach is followed. Alternatively to the typically used in stability calculations spectral methods, new stable high-order finitedifference-based numerical schemes for spatial discretization 1 are employed. Attention is paid to the issue of efficiency, which is critical for the success of the overall algorithm. To this end, use is made of a parallelizable sparse matrix linear algebra package which takes advantage of the sparsity offered by the finite-difference scheme and, as expected, is shown to perform substantially more efficiently than when spectral collocation methods are used. The building blocks of the algorithm have been implemented and extensively validated, focusing on classic PSE analysis of instability on the flow-plate boundary layer, temporal and spatial BiGlobal EVP solutions (the latter necessary for the initialization of the PSE-3D), as well as standard PSE in a cylindrical coordinates using the nonparallel Batchelor vortex basic flow model, such that comparisons between PSE and PSE-3D be possible; excellent agreement is shown in all aforementioned comparisons. Finally, the linear PSE-3D instability analysis is applied to a fully three-dimensional flow composed of a counter-rotating pair of nonparallel Batchelor vortices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of a global instability analysis code coupling a time-stepping approach, as applied to the solution of BiGlobal and TriGlobal instability analysis 1, 2 and finite-volume-based spatial discretization, as used in standard aerodynamics codes is presented. The key advantage of the time-stepping method over matrix-formulation approaches is that the former provides a solution to the computer-storage issues associated with the latter methodology. To-date both approaches are successfully in use to analyze instability in complex geometries, although their relative advantages have never been quantified. The ultimate goal of the present work is to address this issue in the context of spatial discretization schemes typically used in industry. The time-stepping approach of Chiba 3 has been implemented in conjunction with two direct numerical simulation algorithms, one based on the typically-used in this context high-order method and another based on low-order methods representative of those in common use in industry. The two codes have been validated with solutions of the BiGlobal EVP and it has been showed that small errors in the base flow do not have affect significantly the results. As a result, a three-dimensional compressible unsteady second-order code for global linear stability has been successfully developed based on finite-volume spatial discretization and time-stepping method with the ability to study complex geometries by means of unstructured and hybrid meshes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory is called to fill the gap in research into stability and transition in flows over or through complex geometries. Historically, global linear instability has been (and still is) concerned with solution of multi-dimensional eigenvalue problems; the maturing of non-modal linear instability ideas in simple parallel flows during the last decade of last century2–4 has given rise to investigation of transient growth scenarios in an ever increasing variety of complex flows. After a brief exposition of the theory, connections are sought with established approaches for structure identification in flows, such as the proper orthogonal decomposition and topology theory in the laminar regime and the open areas for future research, mainly concerning turbulent and three-dimensional flows, are highlighted. Recent results obtained in our group are reported in both the time-stepping and the matrix-forming approaches to global linear theory. In the first context, progress has been made in implementing a Jacobian-Free Newton Krylov method into a standard finite-volume aerodynamic code, such that global linear instability results may now be obtained in compressible flows of aeronautical interest. In the second context a new stable very high-order finite difference method is implemented for the spatial discretization of the operators describing the spatial BiGlobal EVP, PSE-3D and the TriGlobal EVP; combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the Expectation Maximization algorithm (EM) applied to operational modal analysis of structures. The EM algorithm is a general-purpose method for maximum likelihood estimation (MLE) that in this work is used to estimate state space models. As it is well known, the MLE enjoys some optimal properties from a statistical point of view, which make it very attractive in practice. However, the EM algorithm has two main drawbacks: its slow convergence and the dependence of the solution on the initial values used. This paper proposes two different strategies to choose initial values for the EM algorithm when used for operational modal analysis: to begin with the parameters estimated by Stochastic Subspace Identification method (SSI) and to start using random points. The effectiveness of the proposed identification method has been evaluated through numerical simulation and measured vibration data in the context of a benchmark problem. Modal parameters (natural frequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using SSI and the EM algorithm. On the whole, the results show that the application of the EM algorithm starting from the solution given by SSI is very useful to identify the vibration modes of a structure, discarding the spurious modes that appear in high order models and discovering other hidden modes. Similar results are obtained using random starting values, although this strategy allows us to analyze the solution of several starting points what overcome the dependence on the initial values used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic three-dimensional flows, which are inhomogeneous in two(and periodic in one)or all three spatial directions.After a brief exposition of the theory,some recent advances are reported. First, results are presented on the implementation of a Jacobian-free Newton–Krylov time-stepping method into a standard finite-volume aerodynamic code to obtain global linear instability results in flows of industrial interest. Second, connections are sought between established and more-modern approaches for structure identification in flows, such as proper orthogonal decomposition and Koopman modes analysis (dynamic mode decomposition), and the possibility to connect solutions of the eigenvalue problem obtained by matrix formation or time-stepping with those delivered by dynamic mode decomposition, residual algorithm, and proper orthogonal decomposition analysis is highlighted in the laminar regime; turbulent and three-dimensional flows are identified as open areas for future research. Finally, a new stable very-high-order finite-difference method is implemented for the spatial discretization of the operators describing the spatial biglobal eigenvalue problem, parabolized stability equation three-dimensional analysis, and the triglobal eigenvalue problem; it is shown that, combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose the use of a highly-accurate three-dimensional (3D) fully automatic hp-adaptive finite element method (FEM) for the characterization of rectangular waveguide discontinuities. These discontinuities are either the unavoidable result of mechanical/electrical transitions or deliberately introduced in order to perform certain electrical functions in modern communication systems. The proposed numerical method combines the geometrical flexibility of finite elements with an accuracy that is often superior to that provided by semi-analytical methods. It supports anisotropic refinements on irregular meshes with hanging nodes, and isoparametric elements. It makes use of hexahedral elements compatible with high-order H(curl)H(curl) discretizations. The 3D hp-adaptive FEM is applied for the first time to solve a wide range of 3D waveguide discontinuity problems of microwave communication systems in which exponential convergence of the error is observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El objeto del presente artículo es el estudio de singularidades en problemas de Potencial mediante el uso del Método de las Ecuaciones Integrales sobre el contorno del dominio en estudio. Frente a soluciones basadas en la mejora de la discretización, análisis asintótico o introducción de funciones de forma que representen mejor la evolución de la función, una nueva hipótesis es presentada: el término responsable de la singularidad es incluido en la integral sobre el contorno de la función auxiliar. Los resultados obtenidos mejoran los de soluciones anteriores simplificando también el tiempo de cálculo = The subject of this paper is the modelling of singularities in potential problems, using the Boundary Integral Equation Method. As a logical alternative to classical methods (discretization refinement, asymptotic analysis, high order interpolatory functions) a new hypothesis is presented: the singularity responsible term is included in the interpolatory shape function. As shown by several exemples results are splendid and computer time radically shortened.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tesis constituye un gran avance en el conocimiento del estudio y análisis de inestabilidades hidrodinámicas desde un punto de vista físico y teórico, como consecuencia de haber desarrollado innovadoras técnicas para la resolución computacional eficiente y precisa de la parte principal del espectro correspondiente a los problemas de autovalores (EVP) multidimensionales que gobiernan la inestabilidad de flujos con dos o tres direcciones espaciales inhomogéneas, denominados problemas de estabilidad global lineal. En el contexto del trabajo de desarrollo de herramientas computacionales presentado en la tesis, la discretización mediante métodos de diferencias finitas estables de alto orden de los EVP bidimensionales y tridimensionales que se derivan de las ecuaciones de Navier-Stokes linealizadas sobre flujos con dos o tres direcciones espaciales inhomogéneas, ha permitido una aceleración de cuatro órdenes de magnitud en su resolución. Esta mejora de eficiencia numérica se ha conseguido gracias al hecho de que usando estos esquemas de diferencias finitas, técnicas eficientes de resolución de problemas lineales son utilizables, explotando el alto nivel de dispersión o alto número de elementos nulos en las matrices involucradas en los problemas tratados. Como más notable consecuencia cabe destacar que la resolución de EVPs multidimensionales de inestabilidad global, que hasta la fecha necesitaban de superordenadores, se ha podido realizar en ordenadores de sobremesa. Además de la solución de problemas de estabilidad global lineal, el mencionado desarrollo numérico facilitó la extensión de las ecuaciones de estabilidad parabolizadas (PSE) lineales y no lineales para analizar la inestabilidad de flujos que dependen fuertemente en dos direcciones espaciales y suavemente en la tercera con las ecuaciones de estabilidad parabolizadas tridimensionales (PSE-3D). Precisamente la capacidad de extensión del novedoso algoritmo PSE-3D para el estudio de interacciones no lineales de los modos de estabilidad, desarrollado íntegramente en esta tesis, permite la predicción de transición en flujos complejos de gran interés industrial y por lo tanto extiende el concepto clásico de PSE, el cuál ha sido empleado exitosamente durante las pasadas tres décadas en el mismo contexto para problemas de capa límite bidimensional. Típicos ejemplos de flujos incompresibles se han analizado en este trabajo sin la necesidad de recurrir a restrictivas presuposiciones usadas en el pasado. Se han estudiado problemas vorticales como es el caso de un vórtice aislado o sistemas de vórtices simulando la estela de alas, en los que la homogeneidad axial no se impone y así se puede considerar la difusión viscosa del flujo. Además, se ha estudiado el chorro giratorio turbulento, cuya inestabilidad se utiliza para mejorar las características de funcionamiento de combustores. En la tesis se abarcan adicionalmente problemas de flujos compresibles. Se presenta el estudio de inestabilidad de flujos de borde de ataque a diferentes velocidades de vuelo. También se analiza la estela formada por un elemento rugoso aislado en capa límite supersónica e hipersónica, mostrando excelentes comparaciones con resultados obtenidos mediante simulación numérica directa. Finalmente, nuevas inestabilidades se han identificado en el flujo hipersónico a Mach 7 alrededor de un cono elíptico que modela el vehículo de pruebas en vuelo HIFiRE-5. Los resultados comparan favorablemente con experimentos en vuelo, lo que subraya aún más el potencial de las metodologías de análisis de estabilidad desarrolladas en esta tesis. ABSTRACT The present thesis constitutes a step forward in advancing the frontiers of knowledge of fluid flow instability from a physical point of view, as a consequence of having been successful in developing groundbreaking methodologies for the efficient and accurate computation of the leading part of the spectrum pertinent to multi-dimensional eigenvalue problems (EVP) governing instability of flows with two or three inhomogeneous spatial directions. In the context of the numerical work presented in this thesis, the discretization of the spatial operator resulting from linearization of the Navier-Stokes equations around flows with two or three inhomogeneous spatial directions by variable-high-order stable finite-difference methods has permitted a speedup of four orders of magnitude in the solution of the corresponding two- and three-dimensional EVPs. This improvement of numerical performance has been achieved thanks to the high-sparsity level offered by the high-order finite-difference schemes employed for the discretization of the operators. This permitted use of efficient sparse linear algebra techniques without sacrificing accuracy and, consequently, solutions being obtained on typical workstations, as opposed to the previously employed supercomputers. Besides solution of the two- and three-dimensional EVPs of global linear instability, this development paved the way for the extension of the (linear and nonlinear) Parabolized Stability Equations (PSE) to analyze instability of flows which depend in a strongly-coupled inhomogeneous manner on two spatial directions and weakly on the third. Precisely the extensibility of the novel PSE-3D algorithm developed in the framework of the present thesis to study nonlinear flow instability permits transition prediction in flows of industrial interest, thus extending the classic PSE concept which has been successfully employed in the same context to boundary-layer type of flows over the last three decades. Typical examples of incompressible flows, the instability of which was analyzed in the present thesis without the need to resort to the restrictive assumptions used in the past, range from isolated vortices, and systems thereof, in which axial homogeneity is relaxed to consider viscous diffusion, as well as turbulent swirling jets, the instability of which is exploited in order to improve flame-holding properties of combustors. The instability of compressible subsonic and supersonic leading edge flows has been solved, and the wake of an isolated roughness element in a supersonic and hypersonic boundary-layer has also been analyzed with respect to its instability: excellent agreement with direct numerical simulation results has been obtained in all cases. Finally, instability analysis of Mach number 7 ow around an elliptic cone modeling the HIFiRE-5 flight test vehicle has unraveled flow instabilities near the minor-axis centerline, results comparing favorably with flight test predictions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flows of relevance to new generation aerospace vehicles exist, which are weakly dependent on the streamwise direction and strongly dependent on the other two spatial directions, such as the flow around the (flattened) nose of the vehicle and the associated elliptic cone model. Exploiting these characteristics, a parabolic integration of the Navier-Stokes equations is more appropriate than solution of the full equations, resulting in the so-called Parabolic Navier-Stokes (PNS). This approach not only is the best candidate, in terms of computational efficiency and accuracy, for the computation of steady base flows with the appointed properties, but also permits performing instability analysis and laminar-turbulent transition studies a-posteriori to the base flow computation. This is to be contrasted with the alternative approach of using order-of-magnitude more expensive spatial Direct Numerical Simulations (DNS) for the description of the transition process. The PNS equations used here have been formulated for an arbitrary coordinate transformation and the spatial discretization is performed using a novel stable high-order finite-difference-based numerical scheme, ensuring the recovery of highly accurate solutions using modest computing resources. For verification purposes, the boundary layer solution around a circular cone at zero angle of attack is compared in the incompressible limit with theoretical profiles. Also, the recovered shock wave angle at supersonic conditions is compared with theoretical predictions in the same circular-base cone geometry. Finally, the entire flow field, including shock position and compressible boundary layer around a 2:1 elliptic cone is recovered at Mach numbers 3 and 4

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La ecuación en derivadas parciales de advección difusión con reacción química es la base de los modelos de dispersión de contaminantes en la atmósfera, y los diferentes métodos numéricos empleados para su resolución han sido objeto de amplios estudios a lo largo de su desarrollo. En esta Tesis se presenta la implementación de un nuevo método conservativo para la resolución de la parte advectiva de la ecuación en derivadas parciales que modela la dispersión de contaminantes dentro del modelo mesoescalar de transporte químico CHIMERE. Este método está basado en una técnica de volúmenes finitos junto con una interpolación racional. La ventaja de este método es la conservación exacta de la masa transportada debido al empleo de la ley de conservación de masas. Para ello emplea una formulación de flujo basado en el cálculo de la integral ponderada dentro de cada celda definida para la discretización del espacio en el método de volúmenes finitos. Los resultados numéricos obtenidos en las simulaciones realizadas (implementando el modelo conservativo para la advección en el modelo CHIMERE) se han comparado con los datos observados de concentración de contaminantes registrados en la red de estaciones de seguimiento y medición distribuidas por la Península Ibérica. Los datos estadísticos de medición del error, la media normalizada y la media absoluta normalizada del error, presentan valores que están dentro de los rangos propuestos por la EPA para considerar el modelo preciso. Además, se introduce un nuevo método para resolver la parte advectivadifusiva de la ecuación en derivadas parciales que modeliza la dispersión de contaminantes en la atmósfera. Se ha empleado un método de diferencias finitas de alto orden para resolver la parte difusiva de la ecuación de transporte de contaminantes junto con el método racional conservativo para la parte advectiva en una y dos dimensiones. Los resultados obtenidos de la aplicación del método a diferentes situaciones incluyendo casos académicos y reales han sido comparados con la solución analítica de la ecuación de advección-difusión, demostrando que el nuevo método proporciona un resultado preciso para aproximar la solución. Por último, se ha desarrollado un modelo completo que contempla los fenómenos advectivo y difusivo con reacción química, usando los métodos anteriores junto con una técnica de diferenciación regresiva (BDF2). Esta técnica consiste en un método implícito multipaso de diferenciación regresiva de segundo orden, que nos permite resolver los problemas rígidos típicos de la química atmosférica, modelizados a través de sistemas de ecuaciones diferenciales ordinarias. Este método hace uso de la técnica iterativa Gauss- Seidel para obtener la solución de la parte implícita de la fórmula BDF2. El empleo de la técnica de Gauss-Seidel en lugar de otras técnicas comúnmente empleadas, como la iteración por el método de Newton, nos proporciona rapidez de cálculo y bajo consumo de memoria, ideal para obtener modelos operativos para la resolución de la cinética química atmosférica. ABSTRACT Extensive research has been performed to solve the atmospheric chemicaladvection- diffusion equation and different numerical methods have been proposed. This Thesis presents the implementation of an exactly conservative method for the advection equation in the European scale Eulerian chemistry transport model CHIMERE based on a rational interpolation and a finite volume algorithm. The advantage of the method is that the cell-integrated average is predicted via a flux formulation, thus the mass is exactly conserved. Numerical results are compared with a set of observation registered at some monitoring sites in Spain. The mean normalized bias and the mean normalized absolute error present values that are inside the range to consider an accurate model performance. In addition, it has been introduced a new method to solve the advectiondiffusion equation. It is based on a high-order accurate finite difference method to solve de diffusion equation together with a rational interpolation and a finite volume to solve the advection equation in one dimension and two dimensions. Numerical results obtained from solving several problems include academic and real atmospheric problems have been compared with the analytical solution of the advection-diffusion equation, showing that the new method give an efficient algorithm for solving such problems. Finally, a complete model has been developed to solve the atmospheric chemical-advection-diffusion equation, adding the conservative method for the advection equation, the high-order finite difference method for the diffusion equation and a second-order backward differentiation formula (BDF2) to solve the atmospheric chemical kinetics. The BDF2 is an implicit, second order multistep backward differentiation formula used to solve the stiff systems of ordinary differential equations (ODEs) from atmospheric chemistry. The Gauss-Seidel iteration is used for approximately solving the implicitly defined BDF solution, giving a faster tool than the more commonly used iterative modified Newton technique. This method implies low start-up costs and a low memory demand due to the use of Gauss-Seidel iteration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Desde el año 2004 el código ARWEN ha sido utilizado con éxito para simular y diseñar experimentos relacionados con blancos para fusión por confinamiento inercial [146], astrofísica de laboratorio [145], plasmas como amplificadores de láseres de rayos X [107] o plasmas creados por láser para la medición de espectros de transmisión. Para la realización de estas simulaciones es necesario, además de métodos de alto orden precisos y que presenten buenas propiedades conservativas, conocer ciertas propiedades de los plasmas. En el caso de la fluidodinámica y la conducción electrónica necesitaremos conocer la ecuación de estado [94, 49, 36], y para el transporte de la radiación será preciso disponer de los datos de absorción y emisión [104, 95, 40]. Hasta el año 2009 ARWEN dependía de códigos externos para la generación de estas tablas de opacidad, careciendo de control sobre los métodos empleados para su generación. Además estos códigos asumían equilibrio local termodinámico (LTE), limitando su validez a rangos de alta densidad y baja temperatura. En el marco de esta tesis se ha desarrollado el código BIGBART para la generación de tablas detalladas de opacidad y emisividad para su uso en el módulo de transporte de radiación. De esta forma el grupo dispondrá de su propia herramienta de generación de propiedades radiativas. El código desarrollado es capaz de tratar plasmas en estado fuera de equilibrio (non-LTE) mediante el modelo colisional-radiativo, extendiendo así el rango de validez de las tablas generadas. El trabajo desarrollado para implementar un código LTE/non-LTE estacionario es el siguiente Cálculo de estructura y datos atómicos. Se ha acoplado en código FAC a BIGBART, incorporando la capacidad para generar potenciales atómicos para una configuración y el cálculo de funciones de onda de electrones en orbitales ligados y libres. Aproximaciones y métodos para la obtención de tasas y secciones eficaces de procesos. Se han incluido y programado los modelos implementados en FAC para el cálculo de secciones eficaces de fotoionización, y tasas de decaimiento de emisión espontánea y autoionización. Además se ha incluido el modelo Plane-Wave Born (PWBA) para el cálculo de las secciones eficaces de ionización y excitación colisional. Modelos para la obtención de la distribución de estados iónicos dentro del plasma. Se ha programado un solver LTE basado en la ecuación de Saha-Boltzmann con efectos de ionización por presión debida a los iones adyacentes. También se ha implementado un modelo non-LTE colisionalradiativo para la resolución del sistema de ecuaciones que nos permite obtener la densidad de estados iónicos fuera de equilibrio. Modelo non-LTE RADIOM. Se ha implementado el modelo RADIOM para aproximar efectos de no-equilibrio mediante cálculos LTE a una temperatura equivalente, menor o igual que la temperatura electrónica real. Cálculo de las propiedades espectrales de absorción y emisión. Se han implementado los modelos para el cálculo de los perfiles espectrales de absorción y emisión para procesos entre niveles ligados, ligado-libre y librelibre. Aprovechando el trabajo realizado en este sentido, durante el transcurso de esta tesis se amplió el código BIGBART para tratar problemas con dependencia temporal. La extensión para tratar este tipo de problemas se orientó a la simulación numérica de la interacción de láseres ultra intensos en el rango XUV/rayos X. Para ello, además de adaptar el modelo non-LTE colisionalradiativo se incluyeron procesos adicionales asociados a la interacción de la materia con fotones altamente energéticos. También se han incluido modelos para el cálculo de las propiedades ópticas, y por ende las propiedades dieléctricas de la materia irradiada, de gran interés en algunas aplicaciones novedosas de estos láseres intensos. Debido a la naturaleza fuertemente fuera de equilibrio en la interacción de fotones de alta energía con la materia, se incluyó el tratamiento de la distribución de electrones libres fuera de equilibrio en la aproximación de Fokker-Planck, tanto para condiciones degeneradas como no degeneradas. El trabajo desarrollado en el código non-LTE con dependencia temporal es el siguiente Procesos asociados a láseres intensos XUV/rayos X. Se ha implementado el cálculo de procesos radiativos estimulados de absorción y emisión por el láser. También se han incluido procesos asociados a la creación de vacantes en capas internas electrónicas (Shake), además de doble autoionización y doble fotoionización. Cálculo de propiedades ópticas y dieléctricas en blancos sólidos. Se ha implementado un modelo para la absorción por bremsstrahlung inverso en blancos en estado sólido. Con el coeficiente de extinción debido a procesos de fotoabsorción resonante, fotoionización y bremsstrahlung inverso se obtiene el ´ındice de refracción mediante la relación de Kronig-Kramers. Electrones fuera de equilibrio. Se ha tratado la evolución de la distribución de electrones, cuando no está justificado asumir que es Maxwelliana o de Fermi-Dirac, mediante la aproximación de Fokker-Planck para la colisión entre electrones libres. En la resolución de la ecuación de Fokker-Planck se han incluido los procesos inelásticos por colisiones con iones y términos fuente por interacción con el láser y otros procesos. ABSTRACT Since 2004 the ARWEN code has been successfully used to simulate and design targets for inertial confinement fusion experiments [146], laboratory astrophysics [145], plasmas as X-ray lasers amplifiers [107] or laser created plasmas for measuring transmission spectra. To perform these simulations it is necessary, in addition to high order precise methods with good conservative properties, to know certain properties of plasmas. For fluid dynamic and electronic conduction we need to know the equation of state [94, 49, 36], and for radiation transport it will be necessary to have the data of the absorption and emission [104, 95, 40]. Until 2009 ARWEN depended on external codes to generate these opacity tables, lacking of control over the methods used for their generation. Besides, these codes assumed local thermodynamic equilibrium (LTE), limiting their validity ranges to high densities and low temperatures. As part of this thesis it has been developed the BIGBART code for generating detailed opacity and emissivity tables for use in the radiation transport module. This group will have its own tool for the generation of radiative properties. The developed code is capable of treating plasmas out of equilibrium (non-LTE) by means of a collisional-radiative model, extending the range of validity of the generated tables. The work to implement an LTE/non-LTE steady-state code is as follows Calculation of structure and atomic data. the FAC code was coupled to BIGBART, incorporating the ability to generate atomic potentials for calculating configuration wave functions for bound and free electrons. Approaches and methods for obtaining cross sections and processes rates. We have included and reprogrammed in Fortran the models implemented in FAC for calculation of photoionization cross sections and decay rates of spontaneous emission and autoionization. We also included the Plane- Wave Born (PWBA) model to calculate the cross sections of ionization and collisional excitation. Models for the obtention of the distribution of ionic states within the plasma. We programmed a LTE solver based on the Saha-Boltzmann equation with pressure ionization effects due to adjacent ions. It has also been implemented a non-LTE collisional-radiative model for solving the system of equations that allows us to obtain the density of ionic states out of equilibrium. Non-LTE RADIOM model. We have implemented the non-LTE RADIOM model to approximate non-equilibrium effects with LTE data at an equivalent temperature, lower or equal to the actual electronic temperature. Calculation of the spectral absorption and emission properties. Models have been implemented for the calculation of the spectral profiles of absorption and emission processes between bound levels, free-bound and free-free. Taking advantage of the work done in this direction throughout the course of this thesis the code BIGBART was extended to treat time-dependent problems. The extension to treat such problems is oriented to the numerical simulation of the interaction of ultra intense lasers in the XUV/X-ray range. For this range, in addition to adapting the non-LTE collisional-radiative model, additional processes associated with the interaction of matter with high energy photons. We also included models for calculation of the optical properties, and therefore the dielectric properties of the irradiated material, of great interest in some novel applications of these intense lasers. Due to the strong non-equilibrium nature of the interaction of high energy photons with matter, we included the treatment of the distribution of free electrons out of equilibrium in the Fokker-Planck approximation for both degenerate and non-degenerate conditions. The work in the non-LTE time-dependent code is as follows Processes associated with intense XUV/X-ray lasers. We have implemented the calculation of stimulated radiative processes in absorption and emission. Also we included processes associated with the creation of electronic vacancies in inner shells (Shake), double autoionization and double photoionization. Calculation of optical and dielectric properties in solid targets. We have implemented a model for inverse bremsstrahlung absorption in solid targets. With the extinction coefficient from resonant photoabsorption, photoionization and inverse bremsstrahlung the refractive index is obtained by the Kramers-Kronig relation. Electrons out of equilibrium. We treat the evolution of the electron distribution, when it is not justified to assume a Maxwellian or Fermi-Dirac distribution, by the Fokker-Planck approximation for collisions between electrons. When solving the Fokker-Planck equation we included inelastic collision processes with ions and source terms by interaction with the laser and other processes.