20 resultados para Heraud, Bartolome-Correspondencia
Resumo:
We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.
Resumo:
We analyze the properties of networks obtained from the trajectories of unimodal maps at the transi- tion to chaos via the horizontal visibility (HV) algorithm. We find that the network degrees fluctuate at all scales with amplitude that increases as the size of the network grows, and can be described by a spectrum of graph-theoretical generalized Lyapunov exponents. We further define an entropy growth rate that describes the amount of information created along paths in network space, and find that such en- tropy growth rate coincides with the spectrum of generalized graph-theoretical exponents, constituting a set of Pesin-like identities for the network.
Resumo:
The horizontal visibility algorithm was recently introduced as a mapping between time series and networks. The challenge lies in characterizing the structure of time series (and the processes that generated those series) using the powerful tools of graph theory. Recent works have shown that the visibility graphs inherit several degrees of correlations from their associated series, and therefore such graph theoretical characterization is in principle possible. However, both the mathematical grounding of this promising theory and its applications are in its infancy. Following this line, here we address the question of detecting hidden periodicity in series polluted with a certain amount of noise. We first put forward some generic properties of horizontal visibility graphs which allow us to define a (graph theoretical) noise reduction filter. Accordingly, we evaluate its performance for the task of calculating the period of noisy periodic signals, and compare our results with standard time domain (autocorrelation) methods. Finally, potentials, limitations and applications are discussed.
Resumo:
Tratase de construir la vía principal de saca y acceso al monte citado. Hoy en día solo detestables caminos de carro ponen en comunicación este monte de 723,77 Has. y 500 m3 de posibilidad con el mundo exterior y las consecuencias son funestas tanto con respecto a la economía maderera como para la conservación y mejora de la masa forestal.
Resumo:
Como es bien sabido, en el método de los elementos finitos se suele hablar de dos tipos de convergencia. La primera, o convergencia h, se refiere a la mejora del resultado que se obtiene refinando la malla. Debido a la correspondencia elemento-variables nodales-funciones de interpolación, ello implica un ajuste progresivo de los resultados en aquellas zonas donde se produce el refinamiento. Se trata del método más usado cuando, de forma pragmática, se desea tener una idea de la convergencia de los resultados. Su principal inconveniente radica en el hecho que cada refinamiento exige el cálculo de matrices de rigidez diferentes de las anteriores, de modo que la información debe ser rehecha en cada caso y, por tanto, los costes son elevados. El segundo método analiza la convergencia p, o refinamiento de la aproximación mediante el incremento del grado del polinomio definido sobre cada elemento. Se trata de abandonar la idea de asociar a cada nodo el valor físico de la variable correspondiente en la aproximación típica: u ~ a1Ø1 + a2Ø2 + a3Ø3+ … + anØn; donde las funciones Ø son unidad en el nodo correspondiente y cero en el resto. Por el contrario, se vuelve a la idea original de Ritz, semejante al de un desarrollo en la serie de Fourier, donde las funciones Ø están definidas globalmente y los coeficientes de ponderación no tienen por qué presentar un significado físico concreto. Evidentemente la vuelta no es total; se siguen manteniendo elementos y dentro de cada uno de ellos se establece una jerarquía de funciones Øi. Con esta situación intermedia entre la globalidad absoluta de Ritz y la correspondencia absoluta de la discretización con las variables se consigue, por un lado, mantener una versatilidad suficiente para el ajuste por trozos y, por otro, refinar la aproximación de forma inteligente ya que, al igual que sucede en una serie de Fourier, cada término que se añade produce un efecto menor, lo que posibilita el truncamiento cuando se alcanza un determinado nivel de precisión. Además, puesto que cada Ø tiene un soporte perfectamente definido desde un principio, cada etapa del refinamiento aprovecha todos los cálculos anteriores y sólo se necesita evaluar los nuevos términos de la matriz de rigidez. La primera idea fue propuesta por Zienckiewicz et al.(1970), y posteriormente han desarrollado el método Szabo et al.(1978), Babuska (1975,1978), Peano (1978)etc. El proceso operativo incluye así: a)Establecimiento de una malla amplia sobre el dominio a analizar; b)Definición de una jerarquía de funciones de interpolación dentro de cada elemento; c)Establecimiento de un "indicador" de las zonas que precisen la adición de nuevas funciones jerarquizadas; d)Establecimiento de un "estimador a posteriori" que evalúe el error cometido y precise el momento en que pueda ser detenido el proceso. Un método que sigue los pasos anteriores se denomina autoadaptable y, como se puede comprender, resulta interesantísimo para problemas no triviales. En este artículo, se contempla la posibilidad de extender las ideas anteriores al método de los elementos de contorno.