24 resultados para HOMOGENEOUS SPACES
Resumo:
This paper concerns the characterization as frames of some sequences in U-invariant spaces of a separable Hilbert space H where U denotes an unitary operator defined on H ; besides, the dual frames having the same form are also found. This general setting includes, in particular, shift-invariant or modulation-invariant subspaces in L2 (R), where these frames are intimately related to the generalized sampling problem. We also deal with some related perturbation problems. In so doing, we need that the unitary operator U belongs to a continuous group of unitary operators.
Resumo:
Ubiquitous computing (one person, many computers) is the third era in the history of computing. It follows the mainframe era (many people, one computer) and the PC era (one person, one computer). Ubiquitous computing empowers people to communicate with services by interacting with their surroundings. Most of these so called smart environments contain sensors sensing users’ actions and try to predict the users’ intentions and necessities based on sensor data. The main drawback of this approach is that the system might perform unexpected or unwanted actions, making the user feel out of control. In this master thesis we propose a different procedure based on Interactive Spaces: instead of predicting users’ intentions based on sensor data, the system reacts to users’ explicit predefined actions. To that end, we present REACHeS, a server platform which enables communication among services, resources and users located in the same environment. With REACHeS, a user controls services and resources by interacting with everyday life objects and using a mobile phone as a mediator between himself/herself, the system and the environment. REACHeS’ interfaces with a user are built upon NFC (Near Field Communication) technology. NFC tags are attached to objects in the environment. A tag stores commands that are sent to services when a user touches the tag with his/her NFC enabled device. The prototypes and usability tests presented in this thesis show the great potential of NFC to build such user interfaces.
Resumo:
Study and progress of urban voids. opportunities for new urban design.
Resumo:
Recent advances in non-destructive imaging techniques, such as X-ray computed tomography (CT), make it possible to analyse pore space features from the direct visualisation from soil structures. A quantitative characterisation of the three-dimensional solid-pore architecture is important to understand soil mechanics, as they relate to the control of biological, chemical, and physical processes across scales. This analysis technique therefore offers an opportunity to better interpret soil strata, as new and relevant information can be obtained. In this work, we propose an approach to automatically identify the pore structure of a set of 200-2D images that represent slices of an original 3D CT image of a soil sample, which can be accomplished through non-linear enhancement of the pixel grey levels and an image segmentation based on a PFCM (Possibilistic Fuzzy C-Means) algorithm. Once the solids and pore spaces have been identified, the set of 200-2D images is then used to reconstruct an approximation of the soil sample by projecting only the pore spaces. This reconstruction shows the structure of the soil and its pores, which become more bounded, less bounded, or unbounded with changes in depth. If the soil sample image quality is sufficiently favourable in terms of contrast, noise and sharpness, the pore identification is less complicated, and the PFCM clustering algorithm can be used without additional processing; otherwise, images require pre-processing before using this algorithm. Promising results were obtained with four soil samples, the first of which was used to show the algorithm validity and the additional three were used to demonstrate the robustness of our proposal. The methodology we present here can better detect the solid soil and pore spaces on CT images, enabling the generation of better 2D?3D representations of pore structures from segmented 2D images.
Resumo:
The preservation of biodiversity is a fundamental objective of a ll policies related to a more sustainable development in any modern society. The rain forest and pine forests are two unique Canarian ecosystems with high importance to global biodiversity, holding a large number of endemic species and subspecies that is a priority to preserve. In this work the challenges that will face the natural areas of the Canary Islands are studied, as well as their fundamental value for economic and environmental development of the islands.
Resumo:
La familia Cupressaceae incluye un total de 133 especies agrupadas en 30 géneros, 17 de los cuales son monospecíficos. Esta familia se encuentra representada en todos los continentes salvo en la Antártida. Sus especies se distribuyen en distintas regiones climáticas, y en altitudes que varían desde el nivel del mar hasta los 5.000 m. La falta de descripción anatómica de muchos de los géneros y especies de Cupressaceae es notable, así como la contradicción que aparece entre distintas investigaciones sobre las características anatómicas de la madera descritas para cada especie. Este estudio describe la anatomía de la madera de Cupressaceae y analiza las características que podrían representar sinapomorfías de los clados delimitados en los estudios filogenéticos. Siguiendo los métodos tradicionales de preparación y descripción de la madera a nivel microscópico, se ha estudiado la madera de 113 especies de los 30 géneros de Cupressaceae. Para ello se han empleado muestras de madera de origen trazable, procedentes de colecciones de madera de distintas instituciones internacionales. Se ha empleado una robusta filogenia molecular para la reconstrucción de los caracteres ancestrales. La anatomía de la madera de los 30 géneros de Cupressaceae, pone de manifiesto la gran homogeneidad de la familia, caracterizada por la presencia de traqueidas axiales sin engrosamientos helicoidales, parénquima radial con paredes horizontales lisas, punteaduras del campo de cruce de tipo cupresoide y la carencia de canales resiníferos fisiológicos. Además, todos presentan parénquima axial (salvo Neocallitropsis, Thuja y Xanthocyparis), punteaduras radiales areoladas con toro definido (salvo Thuja y Thujopsis), siendo habitual la presencia de punteaduras areoladas en las paredes tangenciales de la madera tardía, y verrugosidades en la cara interna de las traqueidas (salvo Ca. macleayana, Libocedrus, Papuacedrus y Neocallitropsis). Los radios leñosos son homogéneos y están compuestos de parénquima radial (con la presencia de traqueidas radiales en algunas especies de Cupressus, Sequoia, Thujopsis y X. nootkatensis) con paredes finales lisas o lisas y noduladas (exclusivamente noduladas en Cal. macrolepis, C. bakeri y en la mayoría de especies de Juniperus), y el rango de altura de los radios leñosos se encuentra entre 5 y 15 células. Se consideran posibles sinapomorfismos de Cupressaceae la presencia de verrugosidades en la cara interna de las traqueidas, la presencia de traqueidas axiales sin engrosamientos helicoidales, la presencia de parénquima axial, la presencia de radios leñosos homogéneos (compuestos únicamente de parénquima radial), la tipología de las paredes horizontales del parénquima radial, las punteaduras del campo de cruce de tipo cupresoide y la ausencia de canales resiníferos fisiológicos, pero lo que realmente diferencia a este grupo de coníferas es la simultaneidad de todos estos caracteres en sus maderas. Como sinapomorfías específicas por clados se proponen: la ausencia de toro definido y muescas en el borde de las punteaduras en Thuja-Thujopsis, la existencia de extensiones de toro en Diselma-Fitzroya-Widdringtonia; la presencia de engrosamientos callitroides en Callitris-Actinostrobus; la presencia de espacios intercelulares y las muescas en el borde de las punteaduras en el clado formado por el género Juniperus y las especies de Cupressus en la región oriental; la presencia de paredes finales del parénquima radial tanto lisas como noduladas en los clados formados por el género Xanthocyparis y las especies de Cupressus en la región occidental y en Fitzroya-Diselma; y por último, la presencia de punteaduras del campo de cruce de tipo taxodioide en los clados taxodioid y sequoioid. ABSTRACT The Cupressaceae family comprises 133 species grouped into 30 genera, 17 of which are monotypic. The family is represented in all continents except Antarctica. Its species are distributed in various climate zones and at altitudes from sea level to 5,000 m. There is a considerable lack of anatomical descriptions for many genera and species of Cupressaceae and much contradiction between studies about the wood anatomical features described for each species. This study describes the wood anatomy of Cupressaceae and analyses the features that could represent synapomorphies of the clades recovered in phylogenetic studies. Following the traditional methods of preparation and description of wood at microscopic level, a study was made of the wood of 113 species of the 30 Cupressaceae genera. The study samples had traceable origins and came from wood collections held at various international institutions. A robust molecular phylogeny was used for ancestral state reconstruction. The wood anatomy of the 30 genera of the Cupressaceae shows the high homogeneity of the family, which is characterised by the presence of axial tracheids without helical thickenings, smooth horizontal walls of ray parenchyma cells, cupressoid cross-field pits, and the absence of physiological resin canals. In addition, they all have axial parenchyma (except Neocallitropsis, Thuja and Xanthocyparis), a warty layer on the inner wall of the tracheids (except Ca. macleayana, Libocedrus, Papuacedrus and Neocallitropsis) and tracheid pitting in radial walls with a well defined torus (except Thuja and Thujopsis); tracheid pitting in the tangential walls of the latewood is common. Rays are homogeneous and are composed of ray parenchyma (with the presence of ray tracheids in some species of Cupressus, Sequoia, Thujopsis and X. nootkatensis), with smooth end walls or both smooth and nodular end walls (exclusively nodular in Cal. macrolepis, C. bakeri and most Juniperus species), and ray height range is 5 to 15 cells. Possible synapomorphies of Cupressaceae are the presence of a warty layer on the inner layer of the tracheids, axial tracheids without helical thickenings, the presence of axial parenchyma, homogeneous rays (composed exclusively of ray parenchyma), the typology of the horizontal walls of ray parenchyma cells, cupressoid cross-field pits and the absence of physiological resin canals, but what truly differentiates this group of softwoods is the co-occurrence of all these features in their wood. The following are proposed as clade-specific synapomorphies: absence of a well-defined torus and presence of pits with notched borders in Thuja-Thujopsis, torus extensions in Diselma-Fitzroya-Widdringtonia; callitroid thickenings in Callitris-Actinostrobus; intercellular spaces and pits with notched borders in the clade formed by the genus Juniperus and the species of Cupressus in the eastern region; smooth and nodular ray parenchyma end walls in the clades formed by the genus Xanthocyparis and the species of Cupressus in the western region and in Fitzroya-Diselma, and taxodioid cross-field pits in the taxodioid and sequoioid clades.
Resumo:
La región cerca de la pared de flujos turbulentos de pared ya está bien conocido debido a su bajo número de Reynolds local y la separación escala estrecha. La región lejos de la pared (capa externa) no es tan interesante tampoco, ya que las estadísticas allí se escalan bien por las unidades exteriores. La región intermedia (capa logarítmica), sin embargo, ha estado recibiendo cada vez más atención debido a su propiedad auto-similares. Además, de acuerdo a Flores et al. (2007) y Flores & Jiménez (2010), la capa logarítmica es más o menos independiente de otras capas, lo que implica que podría ser inspeccionado mediante el aislamiento de otras dos capas, lo que reduciría significativamente los costes computacionales para la simulación de flujos turbulentos de pared. Algunos intentos se trataron después por Mizuno & Jiménez (2013), quien simulan la capa logarítmica sin la región cerca de la pared con estadísticas obtenidas de acuerdo razonablemente bien con los de las simulaciones completas. Lo que más, la capa logarítmica podría ser imitado por otra turbulencia sencillo de cizallamiento de motor. Por ejemplo, Pumir (1996) encontró que la turbulencia de cizallamiento homogéneo estadísticamente estacionario (SS-HST) también irrumpe, de una manera muy similar al proceso de auto-sostenible en flujos turbulentos de pared. Según los consideraciones arriba, esta tesis trata de desvelar en qué medida es la capa logarítmica de canales similares a la turbulencia de cizalla más sencillo, SS-HST, mediante la comparación de ambos cinemática y la dinámica de las estructuras coherentes en los dos flujos. Resultados sobre el canal se muestran mediante Lozano-Durán et al. (2012) y Lozano-Durán & Jiménez (2014b). La hoja de ruta de esta tarea se divide en tres etapas. En primer lugar, SS-HST es investigada por medio de un código nuevo de simulación numérica directa, espectral en las dos direcciones horizontales y compacto-diferencias finitas en la dirección de la cizalla. Sin utiliza remallado para imponer la condición de borde cortante periódica. La influencia de la geometría de la caja computacional se explora. Ya que el HST no tiene ninguna longitud característica externa y tiende a llenar el dominio computacional, las simulaciopnes a largo plazo del HST son ’mínimos’ en el sentido de que contiene sólo unas pocas estructuras media a gran escala. Se ha encontrado que el límite principal es el ancho de la caja de la envergadura, Lz, que establece las escalas de longitud y velocidad de la turbulencia, y que las otras dos dimensiones de la caja debe ser suficientemente grande (Lx > 2LZ, Ly > Lz) para evitar que otras direcciones estando limitado también. También se encontró que las cajas de gran longitud, Lx > 2Ly, par con el paso del tiempo la condición de borde cortante periódica, y desarrollar fuertes ráfagas linealizadas no físicos. Dentro de estos límites, el flujo muestra similitudes y diferencias interesantes con otros flujos de cizalla, y, en particular, con la capa logarítmica de flujos turbulentos de pared. Ellos son exploradas con cierto detalle. Incluyen un proceso autosostenido de rayas a gran escala y con una explosión cuasi-periódica. La escala de tiempo de ruptura es de aproximadamente universales, ~20S~l(S es la velocidad de cizallamiento media), y la disponibilidad de dos sistemas de ruptura diferentes permite el crecimiento de las ráfagas a estar relacionado con algo de confianza a la cizalladura de turbulencia inicialmente isotrópico. Se concluye que la SS-HST, llevado a cabo dentro de los parámetros de cílculo apropiados, es un sistema muy prometedor para estudiar la turbulencia de cizallamiento en general. En segundo lugar, las mismas estructuras coherentes como en los canales estudiados por Lozano-Durán et al. (2012), es decir, grupos de vórticidad (fuerte disipación) y Qs (fuerte tensión de Reynolds tangencial, -uv) tridimensionales, se estudia mediante simulación numérica directa de SS-HST con relaciones de aspecto de cuadro aceptables y número de Reynolds hasta Rex ~ 250 (basado en Taylor-microescala). Se discute la influencia de la intermitencia de umbral independiente del tiempo. Estas estructuras tienen alargamientos similares en la dirección sentido de la corriente a las familias separadas en los canales hasta que son de tamaño comparable a la caja. Sus dimensiones fractales, longitudes interior y exterior como una función del volumen concuerdan bien con sus homólogos de canales. El estudio sobre sus organizaciones espaciales encontró que Qs del mismo tipo están alineados aproximadamente en la dirección del vector de velocidad en el cuadrante al que pertenecen, mientras Qs de diferentes tipos están restringidos por el hecho de que no debe haber ningún choque de velocidad, lo que hace Q2s (eyecciones, u < 0,v > 0) y Q4s (sweeps, u > 0,v < 0) emparejado en la dirección de la envergadura. Esto se verifica mediante la inspección de estructuras de velocidad, otros cuadrantes como la uw y vw en SS-HST y las familias separadas en el canal. La alineación sentido de la corriente de Qs ligada a la pared con el mismo tipo en los canales se debe a la modulación de la pared. El campo de flujo medio condicionado a pares Q2-Q4 encontró que los grupos de vórticidad están en el medio de los dos, pero prefieren los dos cizalla capas alojamiento en la parte superior e inferior de Q2s y Q4s respectivamente, lo que hace que la vorticidad envergadura dentro de las grupos de vórticidad hace no cancele. La pared amplifica la diferencia entre los tamaños de baja- y alta-velocidad rayas asociados con parejas de Q2-Q4 se adjuntan como los pares alcanzan cerca de la pared, el cual es verificado por la correlación de la velocidad del sentido de la corriente condicionado a Q2s adjuntos y Q4s con diferentes alturas. Grupos de vórticidad en SS-HST asociados con Q2s o Q4s también están flanqueadas por un contador de rotación de los vórtices sentido de la corriente en la dirección de la envergadura como en el canal. La larga ’despertar’ cónica se origina a partir de los altos grupos de vórticidad ligada a la pared han encontrado los del Álamo et al. (2006) y Flores et al. (2007), que desaparece en SS-HST, sólo es cierto para altos grupos de vórticidad ligada a la pared asociados con Q2s pero no para aquellos asociados con Q4s, cuyo campo de flujo promedio es en realidad muy similar a la de SS-HST. En tercer lugar, las evoluciones temporales de Qs y grupos de vórticidad se estudian mediante el uso de la método inventado por Lozano-Durán & Jiménez (2014b). Las estructuras se clasifican en las ramas, que se organizan más en los gráficos. Ambas resoluciones espaciales y temporales se eligen para ser capaz de capturar el longitud y el tiempo de Kolmogorov puntual más probable en el momento más extrema. Debido al efecto caja mínima, sólo hay un gráfico principal consiste en casi todas las ramas, con su volumen y el número de estructuras instantáneo seguien la energía cinética y enstrofía intermitente. La vida de las ramas, lo que tiene más sentido para las ramas primarias, pierde su significado en el SS-HST debido a las aportaciones de ramas primarias al total de Reynolds estrés o enstrofía son casi insignificantes. Esto también es cierto en la capa exterior de los canales. En cambio, la vida de los gráficos en los canales se compara con el tiempo de ruptura en SS-HST. Grupos de vórticidad están asociados con casi el mismo cuadrante en términos de sus velocidades medias durante su tiempo de vida, especialmente para los relacionados con las eyecciones y sweeps. Al igual que en los canales, las eyecciones de SS-HST se mueven hacia arriba con una velocidad promedio vertical uT (velocidad de fricción) mientras que lo contrario es cierto para los barridos. Grupos de vórticidad, por otra parte, son casi inmóvil en la dirección vertical. En la dirección de sentido de la corriente, que están advección por la velocidad media local y por lo tanto deforman por la diferencia de velocidad media. Sweeps y eyecciones se mueven más rápido y más lento que la velocidad media, respectivamente, tanto por 1.5uT. Grupos de vórticidad se mueven con la misma velocidad que la velocidad media. Se verifica que las estructuras incoherentes cerca de la pared se debe a la pared en vez de pequeño tamaño. Los resultados sugieren fuertemente que las estructuras coherentes en canales no son especialmente asociado con la pared, o incluso con un perfil de cizalladura dado. ABSTRACT Since the wall-bounded turbulence was first recognized more than one century ago, its near wall region (buffer layer) has been studied extensively and becomes relatively well understood due to the low local Reynolds number and narrow scale separation. The region just above the buffer layer, i.e., the logarithmic layer, is receiving increasingly more attention nowadays due to its self-similar property. Flores et al. (20076) and Flores & Jim´enez (2010) show that the statistics of logarithmic layer is kind of independent of other layers, implying that it might be possible to study it separately, which would reduce significantly the computational costs for simulations of the logarithmic layer. Some attempts were tried later by Mizuno & Jimenez (2013), who simulated the logarithmic layer without the buffer layer with obtained statistics agree reasonably well with those of full simulations. Besides, the logarithmic layer might be mimicked by other simpler sheardriven turbulence. For example, Pumir (1996) found that the statistically-stationary homogeneous shear turbulence (SS-HST) also bursts, in a manner strikingly similar to the self-sustaining process in wall-bounded turbulence. Based on these considerations, this thesis tries to reveal to what extent is the logarithmic layer of channels similar to the simplest shear-driven turbulence, SS-HST, by comparing both kinematics and dynamics of coherent structures in the two flows. Results about the channel are shown by Lozano-Dur´an et al. (2012) and Lozano-Dur´an & Jim´enez (20146). The roadmap of this task is divided into three stages. First, SS-HST is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, longterm simulations of HST are ‘minimal’ in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx > 2LZ, Ly > Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx > 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wallbounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ~ 20S~l (S is the mean shear rate), and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general. Second, the same coherent structures as in channels studied by Lozano-Dur´an et al. (2012), namely three-dimensional vortex clusters (strong dissipation) and Qs (strong tangential Reynolds stress, -uv), are studied by direct numerical simulation of SS-HST with acceptable box aspect ratios and Reynolds number up to Rex ~ 250 (based on Taylor-microscale). The influence of the intermittency to time-independent threshold is discussed. These structures have similar elongations in the streamwise direction to detached families in channels until they are of comparable size to the box. Their fractal dimensions, inner and outer lengths as a function of volume agree well with their counterparts in channels. The study about their spatial organizations found that Qs of the same type are aligned roughly in the direction of the velocity vector in the quadrant they belong to, while Qs of different types are restricted by the fact that there should be no velocity clash, which makes Q2s (ejections, u < 0, v > 0) and Q4s (sweeps, u > 0, v < 0) paired in the spanwise direction. This is verified by inspecting velocity structures, other quadrants such as u-w and v-w in SS-HST and also detached families in the channel. The streamwise alignment of attached Qs with the same type in channels is due to the modulation of the wall. The average flow field conditioned to Q2-Q4 pairs found that vortex clusters are in the middle of the pair, but prefer to the two shear layers lodging at the top and bottom of Q2s and Q4s respectively, which makes the spanwise vorticity inside vortex clusters does not cancel. The wall amplifies the difference between the sizes of low- and high-speed streaks associated with attached Q2-Q4 pairs as the pairs reach closer to the wall, which is verified by the correlation of streamwise velocity conditioned to attached Q2s and Q4s with different heights. Vortex clusters in SS-HST associated with Q2s or Q4s are also flanked by a counter rotating streamwise vortices in the spanwise direction as in the channel. The long conical ‘wake’ originates from tall attached vortex clusters found by del A´ lamo et al. (2006) and Flores et al. (2007b), which disappears in SS-HST, is only true for tall attached vortices associated with Q2s but not for those associated with Q4s, whose averaged flow field is actually quite similar to that in SS-HST. Third, the temporal evolutions of Qs and vortex clusters are studied by using the method invented by Lozano-Dur´an & Jim´enez (2014b). Structures are sorted into branches, which are further organized into graphs. Both spatial and temporal resolutions are chosen to be able to capture the most probable pointwise Kolmogorov length and time at the most extreme moment. Due to the minimal box effect, there is only one main graph consist by almost all the branches, with its instantaneous volume and number of structures follow the intermittent kinetic energy and enstrophy. The lifetime of branches, which makes more sense for primary branches, loses its meaning in SS-HST because the contributions of primary branches to total Reynolds stress or enstrophy are almost negligible. This is also true in the outer layer of channels. Instead, the lifetime of graphs in channels are compared with the bursting time in SS-HST. Vortex clusters are associated with almost the same quadrant in terms of their mean velocities during their life time, especially for those related with ejections and sweeps. As in channels, ejections in SS-HST move upwards with an average vertical velocity uτ (friction velocity) while the opposite is true for sweeps. Vortex clusters, on the other hand, are almost still in the vertical direction. In the streamwise direction, they are advected by the local mean velocity and thus deformed by the mean velocity difference. Sweeps and ejections move faster and slower than the mean velocity respectively, both by 1.5uτ . Vortex clusters move with the same speed as the mean velocity. It is verified that the incoherent structures near the wall is due to the wall instead of small size. The results suggest that coherent structures in channels are not particularly associated with the wall, or even with a given shear profile.
Resumo:
A temporal study of energy transfer across length scales is performed in 3D numerical simulations of homogeneous shear flow and isotropic turbulence. The average time taken by perturbations in the energy flux to travel between scales is measured and shown to be additive. Our data suggests that the propagation of disturbances in the energy flux is independent of the forcing and that it defines a ‘velocity’ that determines the energy flux itself. These results support that the cascade is, on average, a scale-local process where energy is continuously transmitted from one scale to the next in order of decreasing size.
Resumo:
Statistically stationary and homogeneous shear turbulence (SS-HST) is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, long-term simulations of HST are “minimal” in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx ≳ 2Lz, Ly ≳ Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx ≳ 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wall-bounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ∼20S−1, and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general.