37 resultados para Genetic Algorithm optimization


Relevância:

90.00% 90.00%

Publicador:

Resumo:

El objetivo principal de esta tesis es el desarrollo de herramientas numéricas basadas en técnicas de onda completa para el diseño asistido por ordenador (Computer-Aided Design,‘CAD’) de dispositivos de microondas. En este contexto, se desarrolla una herramienta numérica basada en el método de los elementos finitos para el diseño y análisis de antenas impresas mediante algoritmos de optimización. Esta técnica consiste en dividir el análisis de una antena en dos partes. Una parte de análisis 3D que se realiza sólo una vez en cada punto de frecuencia de la banda de funcionamiento donde se sustituye una superficie que contiene la metalización del parche por puertas artificiales. En una segunda parte se inserta entre las puertas artificiales en la estructura 3D la superficie soportando una metalización y se procede un análisis 2D para caracterizar el comportamiento de la antena. La técnica propuesta en esta tesis se puede implementar en un algoritmo de optimización para definir el perfil de la antena que permite conseguir los objetivos del diseño. Se valida experimentalmente dicha técnica empleándola en el diseño de antenas impresas de banda ancha para diferentes aplicaciones mediante la optimización del perfil de los parches. También, se desarrolla en esta tesis un procedimiento basado en el método de descomposición de dominio y el método de los elementos finitos para el diseño de dispositivos pasivos de microonda. Se utiliza este procedimiento en particular para el diseño y sintonía de filtros de microondas. En la primera etapa de su aplicación se divide la estructura que se quiere analizar en subdominios aplicando el método de descomposición de dominio, este proceso permite analizar cada segmento por separado utilizando el método de análisis adecuado dado que suele haber subdominios que se pueden analizar mediante métodos analíticos por lo que el tiempo de análisis es más reducido. Se utilizan métodos numéricos para analizar los subdominios que no se pueden analizar mediante métodos analíticos. En esta tesis, se utiliza el método de los elementos finitos para llevar a cabo el análisis. Además de la descomposición de dominio, se aplica un proceso de barrido en frecuencia para reducir los tiempos del análisis. Como método de orden reducido se utiliza la técnica de bases reducidas. Se ha utilizado este procedimiento para diseñar y sintonizar varios ejemplos de filtros con el fin de comprobar la validez de dicho procedimiento. Los resultados obtenidos demuestran la utilidad de este procedimiento y confirman su rigurosidad, precisión y eficiencia en el diseño de filtros de microondas. ABSTRACT The main objective of this thesis is the development of numerical tools based on full-wave techniques for computer-aided design ‘CAD’ of microwave devices. In this context, a numerical technique based on the finite element method ‘FEM’ for the design and analysis of printed antennas using optimization algorithms has been developed. The proposed technique consists in dividing the analysis of the antenna in two stages. In the first stage, the regions of the antenna which do not need to be modified during the CAD process are initially characterized only once from their corresponding matrix transfer function (Generalized Admittance matrix, ‘GAM’). The regions which will be modified are defined as artificial ports, precisely the regions which will contain the conducting surfaces of the printed antenna. In a second stage, the contour shape of the conducting surfaces of the printed antenna is iteratively modified in order to achieve a desired electromagnetic performance of the antenna. In this way, a new GAM of the radiating device which takes into account each printed antenna shape is computed after each iteration. The proposed technique can be implemented with a genetic algorithm to achieve the design objectives. This technique is validated experimentally and applied to the design of wideband printed antennas for different applications by optimizing the shape of the radiating device. In addition, a procedure based on the domain decomposition method and the finite element method has been developed for the design of microwave passive devices. In particular, this procedure can be applied to the design and tune of microwave filters. In the first stage of its implementation, the structure to be analyzed is divided into subdomains using the domain decomposition method; this process allows each subdomains can be analyzed separately using suitable analysis method, since there is usually subdomains that can be analyzed by analytical methods so that the time of analysis is reduced. For analyzing the subdomains that cannot be analyzed by analytical methods, we use the numerical methods. In this thesis, the FEM is used to carry out the analysis. Furthermore the decomposition of the domain, a frequency sweep process is applied to reduce analysis times. The reduced order model as the reduced basis technique is used in this procedure. This procedure is applied to the design and tune of several examples of microwave filters in order to check its validity. The obtained results allow concluding the usefulness of this procedure and confirming their thoroughness, accuracy and efficiency for the design of microwave filters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At present, all methods in Evolutionary Computation are bioinspired by the fundamental principles of neo-Darwinism, as well as by a vertical gene transfer. Virus transduction is one of the key mechanisms of horizontal gene propagation in microorganisms (e.g. bacteria). In the present paper, we model and simulate a transduction operator, exploring the possible role and usefulness of transduction in a genetic algorithm. The genetic algorithm including transduction has been named PETRI (abbreviation of Promoting Evolution Through Reiterated Infection). Our results showed how PETRI approaches higher fitness values as transduction probability comes close to 100%. The conclusion is that transduction improves the performance of a genetic algorithm, assuming a population divided among several sub-populations or ?bacterial colonies?.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The diversity of bibliometric indices today poses the challenge of exploiting the relationships among them. Our research uncovers the best core set of relevant indices for predicting other bibliometric indices. An added difficulty is to select the role of each variable, that is, which bibliometric indices are predictive variables and which are response variables. This results in a novel multioutput regression problem where the role of each variable (predictor or response) is unknown beforehand. We use Gaussian Bayesian networks to solve the this problem and discover multivariate relationships among bibliometric indices. These networks are learnt by a genetic algorithm that looks for the optimal models that best predict bibliometric data. Results show that the optimal induced Gaussian Bayesian networks corroborate previous relationships between several indices, but also suggest new, previously unreported interactions. An extended analysis of the best model illustrates that a set of 12 bibliometric indices can be accurately predicted using only a smaller predictive core subset composed of citations, g-index, q2-index, and hr-index. This research is performed using bibliometric data on Spanish full professors associated with the computer science area.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Finding the degree-constrained minimum spanning tree (DCMST) of a graph is a widely studied NP-hard problem. One of its most important applications is network design. Here we deal with a new variant of the DCMST problem, which consists of finding not only the degree- but also the role-constrained minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do not limit the number of root nodes to one, thereby, generally, building a forest of DRCMSTs. The modeling of network design problems can benefit from the possibility of generating more than one tree and determining the role of the nodes in the network. We propose a novel permutation-based representation to encode these forests. In this new representation, one permutation simultaneously encodes all the trees to be built. We simulate a wide variety of DRCMST problems which we optimize using eight different evolutionary computation algorithms encoding individuals of the population using the proposed representation. The algorithms we use are: estimation of distribution algorithm, generational genetic algorithm, steady-state genetic algorithm, covariance matrix adaptation evolution strategy, differential evolution, elitist evolution strategy, non-elitist evolution strategy and particle swarm optimization. The best results are for the estimation of distribution algorithms and both types of genetic algorithms, although the genetic algorithms are significantly faster.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Encontrar el árbol de expansión mínimo con restricción de grado de un grafo (DCMST por sus siglas en inglés) es un problema NP-complejo ampliamente estudiado. Una de sus aplicaciones más importantes es el dise~no de redes. Aquí nosotros tratamos una nueva variante del problema DCMST, que consiste en encontrar el árbol de expansión mínimo no solo con restricciones de grado, sino también con restricciones de rol (DRCMST), es decir, a~nadimos restricciones para restringir el rol que los nodos tienen en el árbol. Estos roles pueden ser nodo raíz, nodo intermedio o nodo hoja. Por otra parte, no limitamos el número de nodos raíz a uno, por lo que, en general, construiremos bosques de DRCMSTs. El modelado en los problemas de dise~no de redes puede beneficiarse de la posibilidad de generar más de un árbol y determinar el rol de los nodos en la red. Proponemos una nueva representación basada en permutaciones para codificar los bosques de DRCMSTs. En esta nueva representación, una permutación codifica simultáneamente todos los árboles que se construirán. Nosotros simulamos una amplia variedad de problemas DRCMST que optimizamos utilizando ocho algoritmos de computación evolutiva diferentes que codifican los individuos de la población utilizando la representación propuesta. Los algoritmos que utilizamos son: algoritmo de estimación de distribuciones (EDA), algoritmo genético generacional (gGA), algoritmo genético de estado estacionario (ssGA), estrategia evolutiva basada en la matriz de covarianzas (CMAES), evolución diferencial (DE), estrategia evolutiva elitista (ElitistES), estrategia evolutiva no elitista (NonElitistES) y optimización por enjambre de partículas (PSO). Los mejores resultados fueron para el algoritmo de estimación de distribuciones utilizado y ambos tipos de algoritmos genéticos, aunque los algoritmos genéticos fueron significativamente más rápidos.---ABSTRACT---Finding the degree-constrained minimum spanning tree (DCMST) of a graph is a widely studied NP-hard problem. One of its most important applications is network design. Here we deal with a new variant of the DCMST problem, which consists of finding not only the degree- but also the role-constrained minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do not limit the number of root nodes to one, thereby, generally, building a forest of DRCMSTs. The modeling of network design problems can benefit from the possibility of generating more than one tree and determining the role of the nodes in the network. We propose a novel permutation-based representation to encode the forest of DRCMSTs. In this new representation, one permutation simultaneously encodes all the trees to be built. We simulate a wide variety of DRCMST problems which we optimize using eight diferent evolutionary computation algorithms encoding individuals of the population using the proposed representation. The algorithms we use are: estimation of distribution algorithm (EDA), generational genetic algorithm (gGA), steady-state genetic algorithm (ssGA), covariance matrix adaptation evolution strategy (CMAES), diferential evolution (DE), elitist evolution strategy (ElististES), non-elitist evolution strategy (NonElististES) and particle swarm optimization (PSO). The best results are for the estimation of distribution algorithm and both types of genetic algorithms, although the genetic algorithms are significantly faster. iv

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AnewRelativisticScreenedHydrogenicModel has been developed to calculate atomic data needed to compute the optical and thermodynamic properties of high energy density plasmas. The model is based on anewset of universal screeningconstants, including nlj-splitting that has been obtained by fitting to a large database of ionization potentials and excitation energies. This database was built with energies compiled from the National Institute of Standards and Technology (NIST) database of experimental atomic energy levels, and energies calculated with the Flexible Atomic Code (FAC). The screeningconstants have been computed up to the 5p3/2 subshell using a Genetic Algorithm technique with an objective function designed to minimize both the relative error and the maximum error. To select the best set of screeningconstants some additional physical criteria has been applied, which are based on the reproduction of the filling order of the shells and on obtaining the best ground state configuration. A statistical error analysis has been performed to test the model, which indicated that approximately 88% of the data lie within a ±10% error interval. We validate the model by comparing the results with ionization energies, transition energies, and wave functions computed using sophisticated self-consistent codes and experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A compact planar array with parasitic elements is studied to be used in MIMO systems. Classical compact arrays suffer from high coupling which makes correlation and matching efficiency to be worse. A proper matching network improves these lacks although its bandwidth is low and may increase the antenna size. The proposed antenna makes use of parasitic elements to improve both correlation and efficiency. A specific software based on MoM has been developed to analyze radiating structures with several feed points. The array is optimized through a Genetic Algorithm to determine parasitic elements position in order to fulfill different figures of merit. The proposed design provides the required correlation and matching efficiency to have a good performance over a significant bandwidth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes the EvoBANE system. EvoBANE automatically generates Bayesian networks for solving special-purpose problems. EvoBANE evolves a population of individuals that codify Bayesian networks until it finds near optimal individual that solves a given classification problem. EvoBANE has the flexibility to modify the constraints that condition the solution search space, self-adapting to the specifications of the problem to be solved. The system extends the GGEAS architecture. GGEAS is a general-purpose grammar-guided evolutionary automatic system, whose modular structure favors its application to the automatic construction of intelligent systems. EvoBANE has been applied to two classification benchmark datasets belonging to different application domains, and statistically compared with a genetic algorithm performing the same tasks. Results show that the proposed system performed better, as it manages different complexity constraints in order to find the simplest solution that best solves every problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, in order to select a speed controller for a specific non-linear autonomous ground vehicle, proportional-integral-derivative (PID), Fuzzy, and linear quadratic regulator (LQR) controllers were designed. Here, in order to carry out the tuning of the above controllers, a multicomputer genetic algorithm (MGA) was designed. Then, the results of the MGA were used to parameterize the PID, Fuzzy and LQR controllers and to test them under laboratory conditions. Finally, a comparative analysis of the performance of the three controllers was conducted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A compact array of monopoles with a slotted ground plane is analyzed for being used in MIMO systems. Compact arrays suffer usually from high coupling which degrades significantly MIMO benefits. Through a matching network, main drawbacks can be solved, although it tends to provide a low bandwidth. The studied design is an array of monopoles with a slot in the ground plane. The slot shape is optimized with a Genetic Algorithm and an own electromagnetic software based on MoM in order to fulfill main figures of merit within a significant bandwidth

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mass spectrometry (MS) data provide a promising strategy for biomarker discovery. For this purpose, the detection of relevant peakbins in MS data is currently under intense research. Data from mass spectrometry are challenging to analyze because of their high dimensionality and the generally low number of samples available. To tackle this problem, the scientific community is becoming increasingly interested in applying feature subset selection techniques based on specialized machine learning algorithms. In this paper, we present a performance comparison of some metaheuristics: best first (BF), genetic algorithm (GA), scatter search (SS) and variable neighborhood search (VNS). Up to now, all the algorithms, except for GA, have been first applied to detect relevant peakbins in MS data. All these metaheuristic searches are embedded in two different filter and wrapper schemes coupled with Naive Bayes and SVM classifiers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The area of Human-Machine Interface is growing fast due to its high importance in all technological systems. The basic idea behind designing human-machine interfaces is to enrich the communication with the technology in a natural and easy way. Gesture interfaces are a good example of transparent interfaces. Such interfaces must identify properly the action the user wants to perform, so the proper gesture recognition is of the highest importance. However, most of the systems based on gesture recognition use complex methods requiring high-resource devices. In this work, we propose to model gestures capturing their temporal properties, which significantly reduce storage requirements, and use clustering techniques, namely self-organizing maps and unsupervised genetic algorithm, for their classification. We further propose to train a certain number of algorithms with different parameters and combine their decision using majority voting in order to decrease the false positive rate. The main advantage of the approach is its simplicity, which enables the implementation using devices with limited resources, and therefore low cost. The testing results demonstrate its high potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El artículo aborda el problema del encaje de diversas imágenes de una misma escena capturadas por escáner 3d para generar un único modelo tridimensional. Para ello se utilizaron algoritmos genéticos. ABSTRACT: This work introduces a solution based on genetic algorithms to find the overlapping area between two point cloud captures obtained from a three-dimensional scanner. Considering three translation coordinates and three rotation angles, the genetic algorithm evaluates the matching points in the overlapping area between the two captures given that transformation. Genetic simulated annealing is used to improve the accuracy of the results obtained by the genetic algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cognitive Wireless Sensor Networks are an emerging technology with a vast potential to avoid traditional wireless problems such as reliability, interferences and spectrum scarcity in Wireless Sensor Networks. Cognitive Wireless Sensor Networks test-beds are an important tool for future developments, protocol strategy testing and algorithm optimization in real scenarios. A new cognitive test-bed for Cognitive Wireless Sensor Networks is presented in this paper. This work in progress includes both the design of a cognitive simulator for networks with a high number of nodes and the implementation of a new platform with three wireless interfaces and a cognitive software for extracting real data. Finally, as a future work, a remote programmable system and the planning for the physical deployment of the nodes at the university building is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este proyecto se centra en la implementación de un sistema de control activo de ruido mediante algoritmos genéticos. Para ello, se ha tenido en cuenta el tipo de ruido que se quiere cancelar y el diseño del controlador, parte fundamental del sistema de control. El control activo de ruido sólo es eficaz a bajas frecuencias, hasta los 250 Hz, justo para las cuales los elementos pasivos pierden efectividad, y en zonas o recintos de pequeñas dimensiones y conductos. El controlador ha de ser capaz de seguir todas las posibles variaciones del campo acústico que puedan producirse (variaciones de fase, de frecuencia, de amplitud, de funciones de transferencia electro-acústicas, etc.). Su funcionamiento está basado en algoritmos FIR e IIR adaptativos. La elección de un tipo de filtro u otro depende de características tales como linealidad, causalidad y número de coeficientes. Para que la función de transferencia del controlador siga las variaciones que surgen en el entorno acústico de cancelación, tiene que ir variando el valor de los coeficientes del filtro mediante un algoritmo adaptativo. En este proyecto se emplea como algoritmo adaptativo un algoritmo genético, basado en la selección biológica, es decir, simulando el comportamiento evolutivo de los sistemas biológicos. Las simulaciones se han realizado con dos tipos de señales: ruido de carácter aleatorio (banda ancha) y ruido periódico (banda estrecha). En la parte final del proyecto se muestran los resultados obtenidos y las conclusiones al respecto. Summary. This project is focused on the implementation of an active noise control system using genetic algorithms. For that, it has been taken into account the noise type wanted to be canceled and the controller design, a key part of the control system. The active noise control is only effective at low frequencies, up to 250 Hz, for which the passive elements lose effectiveness, and in small areas or enclosures and ducts. The controller must be able to follow all the possible variations of the acoustic field that might be produced (phase, frequency, amplitude, electro-acoustic transfer functions, etc.). It is based on adaptive FIR and IIR algorithms. The choice of a kind of filter or another depends on characteristics like linearity, causality and number of coefficients. Moreover, the transfer function of the controller has to be changing filter coefficients value thought an adaptive algorithm. In this project a genetic algorithm is used as adaptive algorithm, based on biological selection, simulating the evolutionary behavior of biological systems. The simulations have been implemented with two signal types: random noise (broadband) and periodic noise (narrowband). In the final part of the project the results and conclusions are shown.