21 resultados para Frammentazione, Infrastrutture viarie, Corine Land Cover, Attraversamenti faunistici, GIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI and their interpretation as a drought index. During 2012 three locations (at Salamanca, Granada and Córdoba) were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 and MODIS of the chosen places. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a reduced cost. By contranst, MODIS images present a much lower spatial resolution (500x500 m). The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions. Acknowledgements. This work was partially supported by ENESA under project P10 0220C-823. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. MTM2009-14621 and i-MATH No. CSD2006-00032 is greatly appreciated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objeto de esta Tesis doctoral es el desarrollo de una metodologia para la deteccion automatica de anomalias a partir de datos hiperespectrales o espectrometria de imagen, y su cartografiado bajo diferentes condiciones tipologicas de superficie y terreno. La tecnologia hiperespectral o espectrometria de imagen ofrece la posibilidad potencial de caracterizar con precision el estado de los materiales que conforman las diversas superficies en base a su respuesta espectral. Este estado suele ser variable, mientras que las observaciones se producen en un numero limitado y para determinadas condiciones de iluminacion. Al aumentar el numero de bandas espectrales aumenta tambien el numero de muestras necesarias para definir espectralmente las clases en lo que se conoce como Maldicion de la Dimensionalidad o Efecto Hughes (Bellman, 1957), muestras habitualmente no disponibles y costosas de obtener, no hay mas que pensar en lo que ello implica en la Exploracion Planetaria. Bajo la definicion de anomalia en su sentido espectral como la respuesta significativamente diferente de un pixel de imagen respecto de su entorno, el objeto central abordado en la Tesis estriba primero en como reducir la dimensionalidad de la informacion en los datos hiperespectrales, discriminando la mas significativa para la deteccion de respuestas anomalas, y segundo, en establecer la relacion entre anomalias espectrales detectadas y lo que hemos denominado anomalias informacionales, es decir, anomalias que aportan algun tipo de informacion real de las superficies o materiales que las producen. En la deteccion de respuestas anomalas se asume un no conocimiento previo de los objetivos, de tal manera que los pixeles se separan automaticamente en funcion de su informacion espectral significativamente diferenciada respecto de un fondo que se estima, bien de manera global para toda la escena, bien localmente por segmentacion de la imagen. La metodologia desarrollada se ha centrado en la implicacion de la definicion estadistica del fondo espectral, proponiendo un nuevo enfoque que permite discriminar anomalias respecto fondos segmentados en diferentes grupos de longitudes de onda del espectro, explotando la potencialidad de separacion entre el espectro electromagnetico reflectivo y emisivo. Se ha estudiado la eficiencia de los principales algoritmos de deteccion de anomalias, contrastando los resultados del algoritmo RX (Reed and Xiaoli, 1990) adoptado como estandar por la comunidad cientifica, con el metodo UTD (Uniform Targets Detector), su variante RXD-UTD, metodos basados en subespacios SSRX (Subspace RX) y metodo basados en proyecciones de subespacios de imagen, como OSPRX (Orthogonal Subspace Projection RX) y PP (Projection Pursuit). Se ha desarrollado un nuevo metodo, evaluado y contrastado por los anteriores, que supone una variacion de PP y describe el fondo espectral mediante el analisis discriminante de bandas del espectro electromagnetico, separando las anomalias con el algortimo denominado Detector de Anomalias de Fondo Termico o DAFT aplicable a sensores que registran datos en el espectro emisivo. Se han evaluado los diferentes metodos de deteccion de anomalias en rangos del espectro electromagnetico del visible e infrarrojo cercano (Visible and Near Infrared-VNIR), infrarrojo de onda corta (Short Wavelenght Infrared-SWIR), infrarrojo medio (Meadle Infrared-MIR) e infrarrojo termico (Thermal Infrared-TIR). La respuesta de las superficies en las distintas longitudes de onda del espectro electromagnetico junto con su entorno, influyen en el tipo y frecuencia de las anomalias espectrales que puedan provocar. Es por ello que se han utilizado en la investigacion cubos de datos hiperepectrales procedentes de los sensores aeroportados cuya estrategia y diseno en la construccion espectrometrica de la imagen difiere. Se han evaluado conjuntos de datos de test de los sensores AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) y MASTER (MODIS/ASTER Simulator). Se han disenado experimentos sobre ambitos naturales, urbanos y semiurbanos de diferente complejidad. Se ha evaluado el comportamiento de los diferentes detectores de anomalias a traves de 23 tests correspondientes a 15 areas de estudio agrupados en 6 espacios o escenarios: Urbano - E1, Semiurbano/Industrial/Periferia Urbana - E2, Forestal - E3, Agricola - E4, Geologico/Volcanico - E5 y Otros Espacios Agua, Nubes y Sombras - E6. El tipo de sensores evaluados se caracteriza por registrar imagenes en un amplio rango de bandas, estrechas y contiguas, del espectro electromagnetico. La Tesis se ha centrado en el desarrollo de tecnicas que permiten separar y extraer automaticamente pixeles o grupos de pixeles cuya firma espectral difiere de manera discriminante de las que tiene alrededor, adoptando para ello como espacio muestral parte o el conjunto de las bandas espectrales en las que ha registrado radiancia el sensor hiperespectral. Un factor a tener en cuenta en la investigacion ha sido el propio instrumento de medida, es decir, la caracterizacion de los distintos subsistemas, sensores imagen y auxiliares, que intervienen en el proceso. Para poder emplear cuantitativamente los datos medidos ha sido necesario definir las relaciones espaciales y espectrales del sensor con la superficie observada y las potenciales anomalias y patrones objetivos de deteccion. Se ha analizado la repercusion que en la deteccion de anomalias tiene el tipo de sensor, tanto en su configuracion espectral como en las estrategias de diseno a la hora de registrar la radiacion prodecente de las superficies, siendo los dos tipos principales de sensores estudiados los barredores o escaneres de espejo giratorio (whiskbroom) y los barredores o escaneres de empuje (pushbroom). Se han definido distintos escenarios en la investigacion, lo que ha permitido abarcar una amplia variabilidad de entornos geomorfologicos y de tipos de coberturas, en ambientes mediterraneos, de latitudes medias y tropicales. En resumen, esta Tesis presenta una tecnica de deteccion de anomalias para datos hiperespectrales denominada DAFT en su variante de PP, basada en una reduccion de la dimensionalidad proyectando el fondo en un rango de longitudes de onda del espectro termico distinto de la proyeccion de las anomalias u objetivos sin firma espectral conocida. La metodologia propuesta ha sido probada con imagenes hiperespectrales reales de diferentes sensores y en diferentes escenarios o espacios, por lo tanto de diferente fondo espectral tambien, donde los resultados muestran los beneficios de la aproximacion en la deteccion de una gran variedad de objetos cuyas firmas espectrales tienen suficiente desviacion respecto del fondo. La tecnica resulta ser automatica en el sentido de que no hay necesidad de ajuste de parametros, dando resultados significativos en todos los casos. Incluso los objetos de tamano subpixel, que no pueden distinguirse a simple vista por el ojo humano en la imagen original, pueden ser detectados como anomalias. Ademas, se realiza una comparacion entre el enfoque propuesto, la popular tecnica RX y otros detectores tanto en su modalidad global como local. El metodo propuesto supera a los demas en determinados escenarios, demostrando su capacidad para reducir la proporcion de falsas alarmas. Los resultados del algoritmo automatico DAFT desarrollado, han demostrado la mejora en la definicion cualitativa de las anomalias espectrales que identifican a entidades diferentes en o bajo superficie, reemplazando para ello el modelo clasico de distribucion normal con un metodo robusto que contempla distintas alternativas desde el momento mismo de la adquisicion del dato hiperespectral. Para su consecucion ha sido necesario analizar la relacion entre parametros biofisicos, como la reflectancia y la emisividad de los materiales, y la distribucion espacial de entidades detectadas respecto de su entorno. Por ultimo, el algoritmo DAFT ha sido elegido como el mas adecuado para sensores que adquieren datos en el TIR, ya que presenta el mejor acuerdo con los datos de referencia, demostrando una gran eficacia computacional que facilita su implementacion en un sistema de cartografia que proyecte de forma automatica en un marco geografico de referencia las anomalias detectadas, lo que confirma un significativo avance hacia un sistema en lo que se denomina cartografia en tiempo real. The aim of this Thesis is to develop a specific methodology in order to be applied in automatic detection anomalies processes using hyperspectral data also called hyperspectral scenes, and to improve the classification processes. Several scenarios, areas and their relationship with surfaces and objects have been tested. The spectral characteristics of reflectance parameter and emissivity in the pattern recognition of urban materials in several hyperspectral scenes have also been tested. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) and MASTER (MODIS/ASTER Simulator) have been used in this research. It is assumed that there is not prior knowledge of the targets in anomaly detection. Thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by the image segmentation. Several experiments on different scenarios have been designed, analyzing the behavior of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. Results and their consequences in unsupervised classification processes are discussed. Detection of spectral anomalies aims at extracting automatically pixels that show significant responses in relation of their surroundings. This Thesis deals with the unsupervised technique of target detection, also called anomaly detection. Since this technique assumes no prior knowledge about the target or the statistical characteristics of the data, the only available option is to look for objects that are differentiated from the background. Several methods have been developed in the last decades, allowing a better understanding of the relationships between the image dimensionality and the optimization of search procedures as well as the subpixel differentiation of the spectral mixture and its implications in anomalous responses. In other sense, image spectrometry has proven to be efficient in the characterization of materials, based on statistical methods using a specific reflection and absorption bands. Spectral configurations in the VNIR, SWIR and TIR have been successfully used for mapping materials in different urban scenarios. There has been an increasing interest in the use of high resolution data (both spatial and spectral) to detect small objects and to discriminate surfaces in areas with urban complexity. This has come to be known as target detection which can be either supervised or unsupervised. In supervised target detection, algorithms lean on prior knowledge, such as the spectral signature. The detection process for matching signatures is not straightforward due to the complications of converting data airborne sensor with material spectra in the ground. This could be further complicated by the large number of possible objects of interest, as well as uncertainty as to the reflectance or emissivity of these objects and surfaces. An important objective in this research is to establish relationships that allow linking spectral anomalies with what can be called informational anomalies and, therefore, identify information related to anomalous responses in some places rather than simply spotting differences from the background. The development in recent years of new hyperspectral sensors and techniques, widen the possibilities for applications in remote sensing of the Earth. Remote sensing systems measure and record electromagnetic disturbances that the surveyed objects induce in their surroundings, by means of different sensors mounted on airborne or space platforms. Map updating is important for management and decisions making people, because of the fast changes that usually happen in natural, urban and semi urban areas. It is necessary to optimize the methodology for obtaining the best from remote sensing techniques from hyperspectral data. The first problem with hyperspectral data is to reduce the dimensionality, keeping the maximum amount of information. Hyperspectral sensors augment considerably the amount of information, this allows us to obtain a better precision on the separation of material but at the same time it is necessary to calculate a bigger number of parameters, and the precision lowers with the increase in the number of bands. This is known as the Hughes effects (Bellman, 1957) . Hyperspectral imagery allows us to discriminate between a huge number of different materials however some land and urban covers are made up with similar material and respond similarly which produces confusion in the classification. The training and the algorithm used for mapping are also important for the final result and some properties of thermal spectrum for detecting land cover will be studied. In summary, this Thesis presents a new technique for anomaly detection in hyperspectral data called DAFT, as a PP's variant, based on dimensionality reduction by projecting anomalies or targets with unknown spectral signature to the background, in a range thermal spectrum wavelengths. The proposed methodology has been tested with hyperspectral images from different imaging spectrometers corresponding to several places or scenarios, therefore with different spectral background. The results show the benefits of the approach to the detection of a variety of targets whose spectral signatures have sufficient deviation in relation to the background. DAFT is an automated technique in the sense that there is not necessary to adjust parameters, providing significant results in all cases. Subpixel anomalies which cannot be distinguished by the human eye, on the original image, however can be detected as outliers due to the projection of the VNIR end members with a very strong thermal contrast. Furthermore, a comparison between the proposed approach and the well-known RX detector is performed at both modes, global and local. The proposed method outperforms the existents in particular scenarios, demonstrating its performance to reduce the probability of false alarms. The results of the automatic algorithm DAFT have demonstrated improvement in the qualitative definition of the spectral anomalies by replacing the classical model by the normal distribution with a robust method. For their achievement has been necessary to analyze the relationship between biophysical parameters such as reflectance and emissivity, and the spatial distribution of detected entities with respect to their environment, as for example some buried or semi-buried materials, or building covers of asbestos, cellular polycarbonate-PVC or metal composites. Finally, the DAFT method has been chosen as the most suitable for anomaly detection using imaging spectrometers that acquire them in the thermal infrared spectrum, since it presents the best results in comparison with the reference data, demonstrating great computational efficiency that facilitates its implementation in a mapping system towards, what is called, Real-Time Mapping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is an approach using multisensor remote sensing techniques to recognize the potential remains and recreate the original landscape of three archaeological sites. We investigate the spectral characteristics of the reflectance parameter and emissivity in the pattern recognition of archaeological materials in several hyperspectral scenes of the prehispanic site in Palmar Sur (Costa Rica), the Jarama Valley site and the celtiberian city of Segeda in Spain. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of HyMAP, AHS, MASTER and ATM have been used. Several experiments on natural scenarios of Costa Rica and Spain of different complexity, have been designed. Spectral patterns and thermal anomalies have been calculated as evidences of buried remains and change detection. First results, land cover change analyses and their consequences in the digital heritage registration are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este proyecto tiene como objetivo ampliar, mediante la caracterización espectral y multitemporal por técnicas de teledetección y medidas in situ, el estudio del corredor fluvial para el río Tinguiririca en Chile. Consiste en estudiar la cobertura del terreno, evaluar su dinámica de cambio e identificar zonas de acumulación de materiales de alteración hidrotermal arcillosos y óxidos de hierro, presentes en la cuenca durante las últimas tres décadas que puedan explicar su evolución temporal. Se pretenden obtener nuevas variables geoespaciales que ayuden a comprender las posibles causas de variación del cauce, elaborando cartografía para una posterior fase de investigación mediante modelización hidráulica que vaya dirigida a paliar el impacto de las riadas periódicas. Para ello, se han empleado, tratado y explotado imágenes de los sensores remotos TM, ETM+, OLI y TIRS tomadas en un período comprendido entre 1993 y 2014, que se han contrastado con perfiles batimétricos, datos GPS, supervisión y muestreo tomados sobre el terreno. Se ha realizado así mismo, un estudio prospectivo de caso sobre cómo afectarían las variables obtenidas por teledetección a la modelización hidráulica, en particular, la rugosidad, proponiendo un marco metodológico global de integración de las tres técnicas: sistemas de información geográfica, teledetección y modelización hidráulica. ABSTRACT This project aims to develop the study of Tinguiririca River corridor in Chile, through spectral characterization and multitemporal remote sensing and other measurements. This involves studying the land cover, its dynamic changes and identifies clayey materials and iron oxides accumulations of hydrothermal alteration, present in the basin during the last three decades to explain their evolution. It aims to obtain new geospatial variables in order to understand the possible causes of channel variation, developing mapping to a later research stage using hydraulic modeling so as to mitigate the impact of periodic floods. In this way, it has used processed and exploited images of TM, ETM +, OLI and TIRS remote sensing, taken in a period between 1993 and 2014 which it has been compared with bathymetric profiles, GPS, monitoring and sampling data collected in the field . It has done a prospective study about the variables obtained condition on hydraulic modeling, roughness in particular, proposing IX a complete methodological framework about the integration of the three techniques: geographic information systems, remote sensing and modeling hydraulics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los bosques húmedos de montaña se encuentran reconocidos como uno de los ecosistemas más amenazados en el mundo, llegando inclusive a ser considerado como un “hotspot” por su alta diversidad y endemismo. La acelerada pérdida de cobertura vegetal de estos bosques ha ocasionado que, en la actualidad, se encuentren restringidos a una pequeña fracción de su área de distribución histórica. Pese a esto, los estudios realizados sobre cual es efecto de la deforestación, fragmentación, cambios de uso de suelo y su efecto en las comunidades de plantas presentes en este tipo de vegetación aún son muy escuetos, en comparación a los realizados con sus similares amazónicos. En este trabajo, el cual se encuentra dividido en seis capítulos, abordaremos los siguientes objetivos: a) Comprender cuál es la dinámica que han seguido los diferentes tipos de bosques montanos andinos de la cuenca del Rio Zamora, Sur de Ecuador durante entre 1976 y 2002. b) Proveer de evidencia de las tasas de deforestación y fragmentación de todos los tipos diferentes de bosques montanos andinos presentes en la cuenca del Rio Zamora, Sur de Ecuador entre 1976 y 2002. c) Determinar qué factores inducen a la fragmentación de bosques de montaña en la cuenca alta del río Zamora entre 1976 y 2002. d) Determinar cuáles son y cómo afectan los factores ambientales y socioeconómicos a la dinámica de la deforestación y regeneración (pérdida y recuperación del hábitat) sufrida por los bosques de montaña dentro de la zona de estudio y e) Determinar si la deforestación y fragmentación actúan sobre la diversidad y estructura de las comunidades de tres tipos de organismos (comunidades de árboles, comunidades de líquenes epífitos y comunidades de hepáticas epífitas). Este estudio se centró en el cuenca alta del río Zamora, localizada al sur de Ecuador entre las coordenadas 3º 00´ 53” a 4º 20´ 24.65” de latitud sur y 79º 49´58” a 78º 35´ 38” de longitud oeste, que cubre alrededor de 4300 km2 de territorio situado entre las capitales de las provincias de Loja y Zamora-Chinchipe. Con objeto de predecir la dinámica futura de la deforestación en la región de Loja y cómo se verán afectados los diferentes tipos de hábitat, así como para detectar los factores que más influyen en dicha dinámica, se han construido modelos basados en la historia de la deforestación derivados de fotografías aéreas e imágenes satelitales de tres fechas (1976, 1989 y 2002). La cuantificación de la deforestación se realizó mediante la tasa de interés compuesto y para la caracterización de la configuración espacial de los fragmentos de bosque nativo se calcularon índices de paisaje los cuales fueron calculados utilizando el programa Fragstats 3.3. Se ha clasificado el recubrimiento del terreno en forestal y no forestal y se ha modelado su evolución temporal con Modelos Lineales Generalizados Mixtos (GLMM), empleando como variables explicativas tanto variables ambientales espacialmente explícitas (altitud, orientación, pendiente, etc) como antrópicas (distancia a zonas urbanizadas, deforestadas, caminos, entre otras). Para medir el efecto de la deforestación sobre las comunidades modelo (de árboles, líquenes y hepáticas) se monitorearon 11 fragmentos de vegetación de distinto tamaño: dos fragmentos de más de cien hectáreas, tres fragmentos de entre diez y noventa ha y seis fragmentos de menos de diez hectáreas. En ellos se instalaron un total de 38 transectos y 113 cuadrantes de 20 x 20 m a distancias que se alejaban progresivamente del borde en 10, 40 y 80 m. Nuestros resultados muestran una tasa media anual de deforestación del 1,16% para todo el período de estudio, que el tipo de vegetación que más alta tasa de destrucción ha sufrido, es el páramo herbáceo, con un 2,45% anual. El análisis de los patrones de fragmentación determinó un aumento en 2002 de más del doble de fragmentos presentes en 1976, lo cual se repite en el análisis del índice de densidad promedio. El índice de proximidad media entre fragmentos muestra una reducción progresiva de la continuidad de las áreas forestadas. Si bien las formas de los fragmentos se han mantenido bastante similares a lo largo del período de estudio, la conectividad entre estos ha disminuido en un 84%. Por otro lado, de nuestros análisis se desprende que las zonas con mayor probabilidad de deforestarse son aquellas que están cercanas a zonas previamente deforestadas; la cercanía a las vías también influye significativamente en la deforestación, causando un efecto directo en la composición y estructura de las comunidades estudiadas, que en el caso de los árboles viene mediado por el tamaño del fragmento y en el caso del componente epífito (hepáticas y líquenes), viene mediado tanto por el tamaño del fragmento como por la distancia al borde del mismo. Se concluye la posibilidad de que, de mantenerse esta tendencia, este tipo de bosques desaparecerá en corto tiempo y los servicios ecosistémicos que prestan, se verán seriamente comprometidos. ABSTRACT Mountain rainforests are recognized as one of the most threatened ecosystems in the world, and have even come to be considered as a “hotspot” due to their high degree of diversity and endemism. The accelerated loss of plant cover of these forests has caused them to be restricted today to a small fraction of their area of historic distribution. In spite of this, studies done on the effect of deforestation, fragmentation, changes in soil use and their effect on the plant communities present in this type of vegetation are very brief compared to those done on their analogues in the Amazon region. In this study, which is divided into six chapters, we will address the following objectives: a) To understand what the dynamic followed by the different types of Andean mountain forests in the Zamora River watershed of southern Ecuador has been between 1976 and 2002. b) To provide evidence of the rates of deforestation and fragmentation of all the different types of Andean mountain forests existing in the upper watershed of the Zamora River between 1976 and 2002. c) To determine the factors that induces fragmentation of all different types of Andean mountain forests existing in the upper watershed of the Zamora River between 1976 and 2002. d) To determine what the environmental and anthropogenic factors are driving the dynamic of deforestation and regeneration (loss and recuperation of the habitat) suffered by the mountain forests in the area of the study and e) To determine if the deforestation and fragmentation act upon the diversity and structure of three model communities: trees, epiphytic lichens and epiphytic liverworts. This study is centered on the upper Zamora River watershed, located in southern Ecuador between 3º 00´ 53” and 4º 20´ 24.65 south latitude and 79º 49´ 58” to 78º 35´ 38” west longitude, and covers around 4,300 km2 of territory located between Loja and Zamora-Chinchipe provinces. For the purpose of predicting the future dynamic of deforestation in the Loja region and how different types of habitats will be affected, as well as detecting the environmental and socioeconomic factors that influence landscape dynamics, models were constructed based on deforestation history, derived from aerial photographs and satellite images for three dates (1976, 1989 and 2002). Quantifying the deforestation was done using the compound interest rate; to characterize the spatial configuration of fragments of native forest, landscape indices were calculated with Fragstats 3.3 program. Land cover was classified as forested and not forested and its evolution over time was modeled with Generalized Linear Mixed Models (GLMM), using spatially explicit environmental variables (altitude, orientation, slope, etc.) as well as anthropic variables (distance to urbanized, deforested areas and roads, among others) as explanatory variables. To measure the effects of fragmentation on three types of model communities (forest trees and epiphytic lichen and liverworts), 11 vegetation fragments of different sizes were monitored: two fragments of more than one hundred hectares, three fragments of between ten and ninety ha and six fragments of fewer than ten hectares . In these fragments, a total of 38 transects and 113 20 x 20 m quadrats were installed at distances that progressively moved away from the edge of the fragment by 10, 40 and 80 m. Our results show an average annual rate of deforestation of 1.16% for the entire period of the study, and that the type of vegetation that suffered the highest rate of destruction was grassy paramo, with an annual rate of 2.45%. The analysis of fragmentation patterns determined the number of fragments in 2002 more than doubled the number of fragments present in 1976, and the same occurred for the average density index. The variation of the average proximity index among fragments showed a progressive reduction of the continuity of forested areas. Although fragment shapes have remained quite similar over the period of the study, connectivity among them has diminished by 84%. On the other hand, it emerged from our analysis that the areas of greatest probability of deforestation were those that are close to previously deforested areas; proximity to roads also significantly favored the deforestation causing a direct effect on the composition of our model communities, that in the case of forest trees is determined by the size of the fragment, and in the case of the epiphyte communities (liverworts and lichens), is determined, by the size of the fragment as well as the distance to edge. A subject under discussion is the possibility that if this tendency continues, this type of forest will disappear in a short time, and the ecological services it provides, will be seriously endangered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overrecentdecades,remotesensinghasemergedasaneffectivetoolforimprov- ing agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using remote sensed images. Since the natural processes are scale dependent and most of them are hierarchically structured, the determination of optimal study scales is mandatory in understanding these processes and their interactions. The concept of multi-scale/multi- resolution inherent to OBIA methodologies allows the scale problem to be dealt with. But for that multi-scale and hierarchical segmentation algorithms are required. The question that remains unsolved is to determine the suitable scale segmentation that allows different objects and phenomena to be characterized in a single image. In this work, an adaptation of the Simple Linear Iterative Clustering (SLIC) algorithm to perform a multi-scale hierarchi- cal segmentation of satellite images is proposed. The selection of the optimal multi-scale segmentation for different regions of the image is carried out by evaluating the intra- variability and inter-heterogeneity of the regions obtained on each scale with respect to the parent-regions defined by the coarsest scale. To achieve this goal, an objective function, that combines weighted variance and the global Moran index, has been used. Two different kinds of experiment have been carried out, generating the number of regions on each scale through linear and dyadic approaches. This methodology has allowed, on the one hand, the detection of objects on different scales and, on the other hand, to represent them all in a sin- gle image. Altogether, the procedure provides the user with a better comprehension of the land cover, the objects on it and the phenomena occurring.