40 resultados para Fractal time-space
Resumo:
Image analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (Λ1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates
Resumo:
Why should a progressive planner/urbanist pay attention to the Spanish 15M movement? From a disciplinary standpoint, its most complex and interesting aspect, which could hypothetically be transferred to other contexts (as in fact happened in the Occupy Wall Street and Occupy London movements), is its 'spatiality'. This article analyses the spatial practices of the so called #spanishrevolution, one of the 2011 social movements that showed the possibility for a new collective appropriation and self-management (autogestion) of urban public space. Although the political goals of the movement were vague at the time of its inception, the practices and spatial imaginaries deployed by it have become consolidated and proven to be yet another of its more successful facets in promoting the spreading and organisation of the protest, making it a phenomenon that calls for reflection on the part of urban thinkers and planners.
Resumo:
The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.
Resumo:
Image analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak? digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ?373 ?m of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (?1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates.
Resumo:
In large antenna arrays with a large number of antenna elements, the required number of measurements for the characterization of the antenna array is very demanding in cost and time. This letter presents a new offline calibration process for active antenna arrays that reduces the number of measurements by subarray-level characterization. This letter embraces measurements, characterization, and calibration as a global procedure assessing about the most adequate calibration technique and computing of compensation matrices. The procedure has been fully validated with measurements of a 45-element triangular panel array designed for Low Earth Orbit (LEO) satellite tracking that compensates the degradation due to gain and phase imbalances and mutual coupling.
Resumo:
This research proposes a generic methodology for dimensionality reduction upon time-frequency representations applied to the classification of different types of biosignals. The methodology directly deals with the highly redundant and irrelevant data contained in these representations, combining a first stage of irrelevant data removal by variable selection, with a second stage of redundancy reduction using methods based on linear transformations. The study addresses two techniques that provided a similar performance: the first one is based on the selection of a set of the most relevant time?frequency points, whereas the second one selects the most relevant frequency bands. The first methodology needs a lower quantity of components, leading to a lower feature space; but the second improves the capture of the time-varying dynamics of the signal, and therefore provides a more stable performance. In order to evaluate the generalization capabilities of the methodology proposed it has been applied to two types of biosignals with different kinds of non-stationary behaviors: electroencephalographic and phonocardiographic biosignals. Even when these two databases contain samples with different degrees of complexity and a wide variety of characterizing patterns, the results demonstrate a good accuracy for the detection of pathologies, over 98%.The results open the possibility to extrapolate the methodology to the study of other biosignals.
Resumo:
Very recently (Banerjee et al. in Astrophys. Space, doi:1007/s10509-011-0836-1, 2011) the statistics of geomagnetic Disturbance storm (Dst) index have been addressed, and the conclusion from this analysis suggests that the underlying dynamical process can be modeled as a fractional Brownian motion with persistent long-range correlations. In this comment we expose several misconceptions and flaws in the statistical analysis of that work. On the basis of these arguments, the former conclusion should be revisited.
Resumo:
Strictly speaking, space related activities at the Escuela Técnica Superior de Ingenieros Aeronáuticos (ETSIA) begun in 1973, when Prof. Ignacio Da Riva got a contract from the European Space Agency (ESA) to compile a handbook on spacecraft thermal control. By the same time, ESA issued an announcement of opportunities offering to the European scientific community the possibility of perform microgravity relevant experiments on board space platform like the European orbital laboratory Spacelab. Prof. Da Riva proposed one of the few selected experiments dealing with fluid physics under microgravity conditions, later flown on Spacelab-1 mission in 1983. These two events were the starting point where Prof. Da Riva, full professor of Aerodynamics at ETSIA, nucleated a small group of young professors and students located at the Laboratorio de Aerodinámica y Mecánica de Fluidos (LAMF) of ETSIA. Such group was leaded by Prof. Da Riva since its creation till 1991, when Prof. Da Riva died, and it was the seed of the more recently created research institute for aerospace science and technology named "Ignacio Da Riva" (IDR) in his honour. In this communication space related activities performed either at LAMF or IDR during the last three decades are briefly described.
Resumo:
Recently a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of the JET’s well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide realtime performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests’ (IRQs) affinities together with the kernel’s CPU isolation mechanism allows to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multicore architectures. In the past year, four new systems based on this philosophy have been installed and are now part of the JET’s routine operation. The focus of the present work is on the configuration and interconnection of the ingredients that enable these new systems’ real-time capability and on the impact that JET’s distributed real-time architecture has on system engineering requirements, such as algorithm testing and plant commissioning. Details are given about the common real-time configuration and development path of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronising over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel.
Resumo:
Most data stream classification techniques assume that the underlying feature space is static. However, in real-world applications the set of features and their relevance to the target concept may change over time. In addition, when the underlying concepts reappear, reusing previously learnt models can enhance the learning process in terms of accuracy and processing time at the expense of manageable memory consumption. In this paper, we propose mining recurring concepts in a dynamic feature space (MReC-DFS), a data stream classification system to address the challenges of learning recurring concepts in a dynamic feature space while simultaneously reducing the memory cost associated with storing past models. MReC-DFS is able to detect and adapt to concept changes using the performance of the learning process and contextual information. To handle recurring concepts, stored models are combined in a dynamically weighted ensemble. Incremental feature selection is performed to reduce the combined feature space. This contribution allows MReC-DFS to store only the features most relevant to the learnt concepts, which in turn increases the memory efficiency of the technique. In addition, an incremental feature selection method is proposed that dynamically determines the threshold between relevant and irrelevant features. Experimental results demonstrating the high accuracy of MReC-DFS compared with state-of-the-art techniques on a variety of real datasets are presented. The results also show the superior memory efficiency of MReC-DFS.
Resumo:
The modal analysis of a structural system consists on computing its vibrational modes. The experimental way to estimate these modes requires to excite the system with a measured or known input and then to measure the system output at different points using sensors. Finally, system inputs and outputs are used to compute the modes of vibration. When the system refers to large structures like buildings or bridges, the tests have to be performed in situ, so it is not possible to measure system inputs such as wind, traffic, . . .Even if a known input is applied, the procedure is usually difficult and expensive, and there are still uncontrolled disturbances acting at the time of the test. These facts led to the idea of computing the modes of vibration using only the measured vibrations and regardless of the inputs that originated them, whether they are ambient vibrations (wind, earthquakes, . . . ) or operational loads (traffic, human loading, . . . ). This procedure is usually called Operational Modal Analysis (OMA), and in general consists on to fit a mathematical model to the measured data assuming the unobserved excitations are realizations of a stationary stochastic process (usually white noise processes). Then, the modes of vibration are computed from the estimated model. The first issue investigated in this thesis is the performance of the Expectation- Maximization (EM) algorithm for the maximum likelihood estimation of the state space model in the field of OMA. The algorithm is described in detail and it is analysed how to apply it to vibration data. After that, it is compared to another well known method, the Stochastic Subspace Identification algorithm. The maximum likelihood estimate enjoys some optimal properties from a statistical point of view what makes it very attractive in practice, but the most remarkable property of the EM algorithm is that it can be used to address a wide range of situations in OMA. In this work, three additional state space models are proposed and estimated using the EM algorithm: • The first model is proposed to estimate the modes of vibration when several tests are performed in the same structural system. Instead of analyse record by record and then compute averages, the EM algorithm is extended for the joint estimation of the proposed state space model using all the available data. • The second state space model is used to estimate the modes of vibration when the number of available sensors is lower than the number of points to be tested. In these cases it is usual to perform several tests changing the position of the sensors from one test to the following (multiple setups of sensors). Here, the proposed state space model and the EM algorithm are used to estimate the modal parameters taking into account the data of all setups. • And last, a state space model is proposed to estimate the modes of vibration in the presence of unmeasured inputs that cannot be modelled as white noise processes. In these cases, the frequency components of the inputs cannot be separated from the eigenfrequencies of the system, and spurious modes are obtained in the identification process. The idea is to measure the response of the structure corresponding to different inputs; then, it is assumed that the parameters common to all the data correspond to the structure (modes of vibration), and the parameters found in a specific test correspond to the input in that test. The problem is solved using the proposed state space model and the EM algorithm. Resumen El análisis modal de un sistema estructural consiste en calcular sus modos de vibración. Para estimar estos modos experimentalmente es preciso excitar el sistema con entradas conocidas y registrar las salidas del sistema en diferentes puntos por medio de sensores. Finalmente, los modos de vibración se calculan utilizando las entradas y salidas registradas. Cuando el sistema es una gran estructura como un puente o un edificio, los experimentos tienen que realizarse in situ, por lo que no es posible registrar entradas al sistema tales como viento, tráfico, . . . Incluso si se aplica una entrada conocida, el procedimiento suele ser complicado y caro, y todavía están presentes perturbaciones no controladas que excitan el sistema durante el test. Estos hechos han llevado a la idea de calcular los modos de vibración utilizando sólo las vibraciones registradas en la estructura y sin tener en cuenta las cargas que las originan, ya sean cargas ambientales (viento, terremotos, . . . ) o cargas de explotación (tráfico, cargas humanas, . . . ). Este procedimiento se conoce en la literatura especializada como Análisis Modal Operacional, y en general consiste en ajustar un modelo matemático a los datos registrados adoptando la hipótesis de que las excitaciones no conocidas son realizaciones de un proceso estocástico estacionario (generalmente ruido blanco). Posteriormente, los modos de vibración se calculan a partir del modelo estimado. El primer problema que se ha investigado en esta tesis es la utilización de máxima verosimilitud y el algoritmo EM (Expectation-Maximization) para la estimación del modelo espacio de los estados en el ámbito del Análisis Modal Operacional. El algoritmo se describe en detalle y también se analiza como aplicarlo cuando se dispone de datos de vibraciones de una estructura. A continuación se compara con otro método muy conocido, el método de los Subespacios. Los estimadores máximo verosímiles presentan una serie de propiedades que los hacen óptimos desde un punto de vista estadístico, pero la propiedad más destacable del algoritmo EM es que puede utilizarse para resolver un amplio abanico de situaciones que se presentan en el Análisis Modal Operacional. En este trabajo se proponen y estiman tres modelos en el espacio de los estados: • El primer modelo se utiliza para estimar los modos de vibración cuando se dispone de datos correspondientes a varios experimentos realizados en la misma estructura. En lugar de analizar registro a registro y calcular promedios, se utiliza algoritmo EM para la estimación conjunta del modelo propuesto utilizando todos los datos disponibles. • El segundo modelo en el espacio de los estados propuesto se utiliza para estimar los modos de vibración cuando el número de sensores disponibles es menor que vi Resumen el número de puntos que se quieren analizar en la estructura. En estos casos es usual realizar varios ensayos cambiando la posición de los sensores de un ensayo a otro (múltiples configuraciones de sensores). En este trabajo se utiliza el algoritmo EM para estimar los parámetros modales teniendo en cuenta los datos de todas las configuraciones. • Por último, se propone otro modelo en el espacio de los estados para estimar los modos de vibración en la presencia de entradas al sistema que no pueden modelarse como procesos estocásticos de ruido blanco. En estos casos, las frecuencias de las entradas no se pueden separar de las frecuencias del sistema y se obtienen modos espurios en la fase de identificación. La idea es registrar la respuesta de la estructura correspondiente a diferentes entradas; entonces se adopta la hipótesis de que los parámetros comunes a todos los registros corresponden a la estructura (modos de vibración), y los parámetros encontrados en un registro específico corresponden a la entrada en dicho ensayo. El problema se resuelve utilizando el modelo propuesto y el algoritmo EM.
Resumo:
SSR es el acrónimo de SoundScape Renderer (tool for real-time spatial audio reproduction providing a variety of rendering algorithms), es un programa escrito en su mayoría en C++. El programa permite al usuario escuchar tanto sonidos grabados con anterioridad como sonidos en directo. El sonido o los sonidos se oirán, desde el punto de vista del oyente, como si el sonido se produjese en el punto que el programa decida, lo interesante de este proyecto es que el sonido podrá cambiar de lugar, moverse, etc. Todo en tiempo real. Esto se consigue sin modificar el sonido al grabarlo pero sí al emitirlo, el programa calcula las variaciones necesarias para que al emitir el sonido al oyente le llegue como si el sonido realmente se generase en un punto del espacio o lo más parecido posible. La sensación de movimiento no deja de ser el punto anterior cambiando de lugar. La idea era crear una aplicación web basada en Canvas de HTML5 que se comunicará con esta interfaz de usuario remota. Así se solucionarían todos los problemas de compatibilidad ya que cualquier dispositivo con posibilidad de visualizar páginas web podría correr una aplicación basada en estándares web, por ejemplo un sistema con Windows o un móvil con navegador. El protocolo debía de ser WebSocket porque es un protocolo HTML5 y ofrece las “garantías” de latencia que una aplicación con necesidades de información en tiempo real requiere. Nos permite una comunicación full-dúplex asíncrona sin mucho payload que es justo lo que se venía a evitar al no usar polling normal de HTML. El problema que surgió fue que la interfaz de usuario de red que tenía el programa no era compatible con WebSocket debido a un handshacking inicial y obligatorio que realiza el protocolo, por lo que se necesitaba otra interfaz de red. Se decidió entonces cambiar a JSON como formato para el intercambio de mensajes. Al final el proyecto comprende no sólo la aplicación web basada en Canvas sino también un servidor funcional y la definición de una nueva interfaz de usuario de red con su protocolo añadido. ABSTRACT. This project aims to become a part of the SSR tool to extend its capabilities in the field of the access. SSR is an acronym for SoundScape Renderer, is a program mostly written in C++ that allows you to hear already recorded or live sound with a variety of sound equipment as if the sound came from a desired place in the space. Like the web-page of the SSR says surely better explained: “The SoundScape Renderer (SSR) is a tool for real-time spatial audio reproduction providing a variety of rendering algorithms.” The application can be used with a graphical interface written in Qt but has also a network interface for external applications to use it. This network interface communicates using XML messages. A good example of it is the Android client. This Android client is already working. In order to use the application should be run it by loading an audio source and the wanted environment so that the renderer knows what to do. In that moment the server binds and anyone can use the network interface. Since the network interface is documented everyone can make an application to interact with this network interface. So the application can have as many user interfaces as wanted. The part that is developed in this project has nothing to do neither with audio rendering nor even with the reproduction of the spatial audio. The part that is developed here is about the interface used in the SSR application. As it can be deduced from the title: “Distributed Web Interface for Real-Time Spatial Audio Reproduction System”, this work aims only to offer the interface via web for the SSR (“Real-Time Spatial Audio Reproduction System”). The idea is not to make a new graphical interface for SSR but to allow more types of interfaces and communication. To accomplish the objective of allowing more graphical interfaces this project is going to use a new network interface. By now the SSR application is using only XML for data interchange but this new network interface support JSON. This project comprehends the server that launch the application, the user interface and the new network interface. It is done with these modules in order to allow creating new user interfaces that can communicate with the server or new servers that can communicate with the user interface by defining a complete network interface for data interchange.
Resumo:
The excitation of Fast Magnetosonic (FMS)waves by a cylindrical array of parallel tethers carrying timemodulated current is discussed. The tethers would fly vertical in the equatorial plane, which is perpendicular to the geomagnetic field when its tilt is ignored, and would be stabilized by the gravity gradient. The tether array would radiate a single FMS wave. In the time-dependent background made of geomagnetic field plus radiated wave, plasma FMS perturbations are excited in the array vicinity through a parametric instability. The growth rate is estimated by truncating the evolution equation for FMS perturbations to the two azimuthal modes of lowest order. Design parameters such as tether length and number, required power and mass are discussed for Low Earth Orbit conditions. The array-attached wave structure would have the radiated wave controlled by the intensity and modulation frequency of the currents, making an active experiment on non-linear low frequency waves possible in real space plasma conditions.
Resumo:
A chaotic output was obtained previously by us, from an Optical Programmable Logic Cell when a feedback is added. Some time delay is given to the feedback in order to obtain the non-linear behavior. The working conditions of such a cell is obtained from a simple diagram with fractal properties. We analyze its properties as well as the influence of time delay on the characteristics of the working diagram. A further study of the chaotic obtained signal is presented.
Resumo:
Pulse-width modulation is widely used to control electronic converters. One of the most frequently used topologies for high DC voltage/low DC voltage conversion is the Buck converter. These converters are described by a second order system with an LC filter between the switching subsystem and the load. The use of a coil with an amorphous magnetic material core rather than an air core permits the design of smaller converters. If high switching frequencies are used to obtain high quality voltage output, then the value of the auto inductance L is reduced over time. Robust controllers are thus needed if the accuracy of the converter response must be preserved under auto inductance and payload variations. This paper presents a robust controller for a Buck converter based on a state space feedback control system combined with an additional virtual space variable which minimizes the effects of the inductance and load variations when a switching frequency that is not too high is applied. The system exhibits a null steady-state average error response for the entire range of parameter variations. Simulation results and a comparison with a standard PID controller are also presented.