30 resultados para Feature Descriptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic blood glucose classification may help specialists to provide a better interpretation of blood glucose data, downloaded directly from patients glucose meter and will contribute in the development of decision support systems for gestational diabetes. This paper presents an automatic blood glucose classifier for gestational diabetes that compares 6 different feature selection methods for two machine learning algorithms: neural networks and decision trees. Three searching algorithms, Greedy, Best First and Genetic, were combined with two different evaluators, CSF and Wrapper, for the feature selection. The study has been made with 6080 blood glucose measurements from 25 patients. Decision trees with a feature set selected with the Wrapper evaluator and the Best first search algorithm obtained the best accuracy: 95.92%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traumatic Brain Injury -TBI- -1- is defined as an acute event that causes certain damage to areas of the brain. TBI may result in a significant impairment of an individuals physical, cognitive and psychosocial functioning. The main consequence of TBI is a dramatic change in the individuals daily life involving a profound disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges of TBI Neuroimaging is to develop robust automated image analysis methods to detect signatures of TBI, such as: hyper-intensity areas, changes in image contrast and in brain shape. The final goal of this research is to develop a method to identify the altered brain structures by automatically detecting landmarks on the image where signal changes and to provide comprehensive information to the clinician about them. These landmarks identify injured structures by co-registering the patient?s image with an atlas where landmarks have been previously detected. The research work has been initiated by identifying brain structures on healthy subjects to validate the proposed method. Later, this method will be used to identify modified structures on TBI imaging studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a strategy for solving the feature matching problem in calibrated very wide-baseline camera settings. In this kind of settings, perspective distortion, depth discontinuities and occlusion represent enormous challenges. The proposed strategy addresses them by using geometrical information, specifically by exploiting epipolar-constraints. As a result it provides a sparse number of reliable feature points for which 3D position is accurately recovered. Special features known as junctions are used for robust matching. In particular, a strategy for refinement of junction end-point matching is proposed which enhances usual junction-based approaches. This allows to compute cross-correlation between perfectly aligned plane patches in both images, thus yielding better matching results. Evaluation of experimental results proves the effectiveness of the proposed algorithm in very wide-baseline environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durante el proceso de producción de voz, los factores anatómicos, fisiológicos o psicosociales del individuo modifican los órganos resonadores, imprimiendo en la voz características particulares. Los sistemas ASR tratan de encontrar los matices característicos de una voz y asociarlos a un individuo o grupo. La edad y sexo de un hablante son factores intrínsecos que están presentes en la voz. Este trabajo intenta diferenciar esas características, aislarlas y usarlas para detectar el género y la edad de un hablante. Para dicho fin, se ha realizado el estudio y análisis de las características basadas en el pulso glótico y el tracto vocal, evitando usar técnicas clásicas (como pitch y sus derivados) debido a las restricciones propias de dichas técnicas. Los resultados finales de nuestro estudio alcanzan casi un 100% en reconocimiento de género mientras en la tarea de reconocimiento de edad el reconocimiento se encuentra alrededor del 80%. Parece ser que la voz queda afectada por el género del hablante y las hormonas, aunque no se aprecie en la audición. ABSTRACT Particular elements of the voice are printed during the speech production process and are related to anatomical and physiological factors of the phonatory system or psychosocial factors acquired by the speaker. ASR systems attempt to find those peculiar nuances of a voice and associate them to an individual or a group. Age and gender are inherent factors to the speaker which may be represented in voice. This work attempts to differentiate those characteristics, isolate them and use them to detect speaker’s gender and age. Features based on glottal pulse and vocal tract are studied and analyzed in order to achieve good results in both tasks. Classical methodologies (such as pitch and derivates) are avoided since the requirements of those techniques may be too restrictive. The final scores achieve almost 100% in gender recognition whereas in age recognition those scores are around 80%. Factors related to the gender and hormones seem to affect the voice although they are not audible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a "heuristic argument" that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field ("time averages"). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, the research community has focused on new classification methods that rely on statistical characteristics of Internet traffic, instead of pre-viously popular port-number-based or payload-based methods, which are under even bigger constrictions. Some research works based on statistical characteristics generated large fea-ture sets of Internet traffic; however, nowadays it?s impossible to handle hun-dreds of features in big data scenarios, only leading to unacceptable processing time and misleading classification results due to redundant and correlative data. As a consequence, a feature selection procedure is essential in the process of Internet traffic characterization. In this paper a survey of feature selection methods is presented: feature selection frameworks are introduced, and differ-ent categories of methods are briefly explained and compared; several proposals on feature selection in Internet traffic characterization are shown; finally, future application of feature selection to a concrete project is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes an automatic methodology for modeling complex systems. Our methodology is based on the combination of Grammatical Evolution and classical regression to obtain an optimal set of features that take part of a linear and convex model. This technique provides both Feature Engineering and Symbolic Regression in order to infer accurate models with no effort or designer's expertise requirements. As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. These facilities consume from 10 to 100 times more power per square foot than typical office buildings. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. For this case study, our methodology minimizes error in power prediction. This work has been tested using real Cloud applications resulting on an average error in power estimation of 3.98%. Our work improves the possibilities of deriving Cloud energy efficient policies in Cloud data centers being applicable to other computing environments with similar characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing seismic isolation systems are based on well-known and accepted physical principles, but they are still having some functional drawbacks. As an attempt of improvement, the Roll-N-Cage (RNC) isolator has been recently proposed. It is designed to achieve a balance in controlling isolator displacement demands and structural accelerations. It provides in a single unit all the necessary functions of vertical rigid support, horizontal flexibility with enhanced stability, resistance to low service loads and minor vibration, and hysteretic energy dissipation characteristics. It is characterized by two unique features that are a self-braking (buffer) and a self-recentering mechanism. This paper presents an advanced representation of the main and unique features of the RNC isolator using an available finite element code called SAP2000. The validity of the obtained SAP2000 model is then checked using experimental, numerical and analytical results. Then, the paper investigates the merits and demerits of activating the built-in buffer mechanism on both structural pounding mitigation and isolation efficiency. The paper addresses the problem of passive alleviation of possible inner pounding within the RNC isolator, which may arise due to the activation of its self-braking mechanism under sever excitations such as near-fault earthquakes. The results show that the obtained finite element code-based model can closely match and accurately predict the overall behavior of the RNC isolator with effectively small errors. Moreover, the inherent buffer mechanism of the RNC isolator could mitigate or even eliminate direct structure-tostructure pounding under severe excitation considering limited septation gaps between adjacent structures. In addition, the increase of inherent hysteretic damping of the RNC isolator can efficiently limit its peak displacement together with the severity of the possibly developed inner pounding and, therefore, alleviate or even eliminate the possibly arising negative effects of the buffer mechanism on the overall RNC-isolated structural responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histograms of Oriented Gradients (HoGs) provide excellent results in object detection and verification. However, their demanding processing requirements bound their applicability in some critical real-time scenarios, such as for video-based on-board vehicle detection systems. In this work, an efficient HOG configuration for pose-based on-board vehicle verification is proposed, which alleviates both the processing requirements and required feature vector length without reducing classification performance. The impact on classification of some critical configuration and processing parameters is in depth analyzed to propose a baseline efficient descriptor. Based on the analysis of its cells contribution to classification, new view-dependent cell-configuration patterns are proposed, resulting in reduced descriptors which provide an excellent balance between performance and computational requirements, rendering higher verification rates than other works in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El desarrollo de las técnicas de imágenes por resonancia magnética han permitido el estudio y cuantificación, in vivo, de los cambios que ocurren en la morfología cerebral ligados a procesos tales como el neurodesarrollo, el envejecimiento, el aprendizaje o la enfermedad. Un gran número de métodos de morfometría han sido desarrollados con el fin de extraer la información contenida en estas imágenes y traducirla en indicadores de forma o tamaño, tales como el volumen o el grosor cortical; marcadores que son posteriormente empleados para encontrar diferencias estadísticas entre poblaciones de sujetos o realizar correlaciones entre la morfología cerebral y, por ejemplo, la edad o la severidad de determinada enfermedad. A pesar de la amplia variedad de biomarcadores y metodologías de morfometría, muchos estudios sesgan sus hipótesis, y con ello los resultados experimentales, al empleo de un número reducido de biomarcadores o a al uso de una única metodología de procesamiento. Con el presente trabajo se pretende demostrar la importancia del empleo de diversos métodos de morfometría para lograr una mejor caracterización del proceso que se desea estudiar. En el mismo se emplea el análisis de forma para detectar diferencias, tanto globales como locales, en la morfología del tálamo entre pacientes adolescentes con episodios tempranos de psicosis y adolescentes sanos. Los resultados obtenidos demuestran que la diferencia de volumen talámico entre ambas poblaciones de sujetos, previamente descrita en la literatura, se debe a una reducción del volumen de la región anterior-mediodorsal y del núcleo pulvinar del tálamo de los pacientes respecto a los sujetos sanos. Además, se describe el desarrollo de un estudio longitudinal, en sujetos sanos, que emplea simultáneamente distintos biomarcadores para la caracterización y cuantificación de los cambios que ocurren en la morfología de la corteza cerebral durante la adolescencia. A través de este estudio se revela que el proceso de “alisado” que experimenta la corteza cerebral durante la adolescencia es consecuencia de una disminución de la profundidad, ligada a un incremento en el ancho, de los surcos corticales. Finalmente, esta metodología es aplicada, en un diseño transversal, para el estudio de las causas que provocan el decrecimiento tanto del grosor cortical como del índice de girificación en adolescentes con episodios tempranos de psicosis. ABSTRACT The ever evolving sophistication of magnetic resonance image techniques continue to provide new tools to characterize and quantify, in vivo, brain morphologic changes related to neurodevelopment, senescence, learning or disease. The majority of morphometric methods extract shape or size descriptors such as volume, surface area, and cortical thickness from the MRI image. These morphological measurements are commonly entered in statistical analytic approaches for testing between-group differences or for correlations between the morphological measurement and other variables such as age, sex, or disease severity. A wide variety of morphological biomarkers are reported in the literature. Despite this wide range of potentially useful biomarkers and available morphometric methods, the hypotheses and findings of the grand majority of morphological studies are biased because reports assess only one morphometric feature and usually use only one image processing method. Throughout this dissertation biomarkers and image processing strategies are combined to provide innovative and useful morphometric tools for examining brain changes during neurodevelopment. Specifically, a shape analysis technique allowing for a fine-grained assessment of regional thalamic volume in early-onset psychosis patients and healthy comparison subjects is implemented. Results show that disease-related reductions in global thalamic volume, as previously described by other authors, could be particularly driven by a deficit in the anterior-mediodorsal and pulvinar thalamic regions in patients relative to healthy subjects. Furthermore, in healthy adolescents different cortical features are extracted and combined and their interdependency is assessed over time. This study attempts to extend current knowledge of normal brain development, specifically the largely unexplored relationship between changes of distinct cortical morphological measurements during adolescence. This study demonstrates that cortical flattening, present during adolescence, is produced by a combination of age-related increase in sulcal width and decrease in sulcal depth. Finally, this methodology is applied to a cross-sectional study, investigating the mechanisms underlying the decrease in cortical thickness and gyrification observed in psychotic patients with a disease onset during adolescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the target localization problem in wireless visual sensor networks. Additive noises and measurement errors will affect the accuracy of target localization when the visual nodes are equipped with low-resolution cameras. In the goal of improving the accuracy of target localization without prior knowledge of the target, each node extracts multiple feature points from images to represent the target at the sensor node level. A statistical method is presented to match the most correlated feature point pair for merging the position information of different sensor nodes at the base station. Besides, in the case that more than one target exists in the field of interest, a scheme for locating multiple targets is provided. Simulation results show that, our proposed method has desirable performance in improving the accuracy of locating single target or multiple targets. Results also show that the proposed method has a better trade-off between camera node usage and localization accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This feature issue highlights contributions from authors who presented their research at the OSA Light, Energy and the Environment Congress, held in Canberra, Australia from 2-5 December, 2014.