17 resultados para Euclidean distance model,
Resumo:
The present paper describes the preliminary stages of the development of a new, comprehensive model conceived to simulate the evacuation of transport airplanes in certification studies. Two previous steps were devoted to implementing an efficient procedure to define the whole geometry of the cabin, and setting up an algorithm for assigning seats to available exits. Now, to clarify the role of the cabin arrangement in the evacuation process, the paper addresses the influence of several restrictions on the seat-to-exit assignment algorithm, maintaining a purely geometrical approach for consistency. Four situations are considered: first, an assignment method without limitations to search the minimum for the total distance run by all passengers along their escaping paths; second, a protocol that restricts the number of evacuees through each exit according to updated FAR 25 capacity; third, a procedure which tends to the best proportional sharing among exits but obliges to each passenger to egress through the nearest fore or rear exits; and fourth, a scenario which includes both restrictions. The four assignment strategies are applied to turboprops, and narrow body and wide body jets. Seat to exit distance and number of evacuees per exit are the main output variables. The results show the influence of airplane size and the impact of non-symmetries and inappropriate matching between size and longitudinal location of exits.
Resumo:
Because of the high number of crashes occurring on highways, it is necessary to intensify the search for new tools that help in understanding their causes. This research explores the use of a geographic information system (GIS) for an integrated analysis, taking into account two accident-related factors: design consistency (DC) (based on vehicle speed) and available sight distance (ASD) (based on visibility). Both factors require specific GIS software add-ins, which are explained. Digital terrain models (DTMs), vehicle paths, road centerlines, a speed prediction model, and crash data are integrated in the GIS. The usefulness of this approach has been assessed through a study of more than 500 crashes. From a regularly spaced grid, the terrain (bare ground) has been modeled through a triangulated irregular network (TIN). The length of the roads analyzed is greater than 100 km. Results have shown that DC and ASD could be related to crashes in approximately 4% of cases. In order to illustrate the potential of GIS, two crashes are fully analyzed: a car rollover after running off road on the right side and a rear-end collision of two moving vehicles. Although this procedure uses two software add-ins that are available only for ArcGIS, the study gives a practical demonstration of the suitability of GIS for conducting integrated studies of road safety.