29 resultados para Ecosystem-based management
Application of the agency theory for the analysis of performance-based mechanisms in road management
Resumo:
El WCTR es un congreso de reconocido prestigio internacional en el ámbito de la investigación del transporte, y aunque las actas publicadas están en formato digital y sin ISSN ni ISBN, lo consideramos lo suficientemente importante como para que se considere en los indicadores. This paper develops a model based on agency theory to analyze road management systems (under the different contract forms available today) that employ a mechanism of performance indicators to establish the payment of the agent. The base assumption is that of asymmetric information between the principal (Public Authorities) and the agent (contractor) and the risk aversion of this latter. It is assumed that the principal may only measure the agent?s performance indirectly and by means of certain performance indicators that may be verified by the authorities. In this model there is presumed to be a relation between the efforts made by the agent and the performance level measured by the corresponding indicators, though it is also considered that there may be dispersion between both variables that gives rise to a certain degree of randomness in the contract. An analysis of the optimal contract has been made on the basis of this model and in accordance with a series of parameters that characterize the economic environment and the particular conditions of road infrastructure. As a result of the analysis made, it is considered that an optimal contract should generally combine a fixed component and a payment in accordance with the performance level obtained. The higher the risk aversion of the agent and the greater the marginal cost of public funds, the lower the impact of this performance-based payment. By way of conclusion, the system of performance indicators should be as broad as possible but should not overweight those indicators that encompass greater randomness in their results.
Resumo:
The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe.
Resumo:
This paper describes an agent-based approach for the simulation of air traffic management (ATM) in Europe that was designed to help analyze proposals for future ATM systems. This approach is able to represent new collaborative deci-sion processes for flow traffic management, it uses an intermediate level of ab-straction (useful for simulations at larger scales), and was designed to be a practi-cal tool (open and reusable) for the development of different ATM studies. It was successfully applied in three studies related to the design of future ATM systems in Europe.
Resumo:
The aim of the paper is to discuss the use of knowledge models to formulate general applications. First, the paper presents the recent evolution of the software field where increasing attention is paid to conceptual modeling. Then, the current state of knowledge modeling techniques is described where increased reliability is available through the modern knowledge acquisition techniques and supporting tools. The KSM (Knowledge Structure Manager) tool is described next. First, the concept of knowledge area is introduced as a building block where methods to perform a collection of tasks are included together with the bodies of knowledge providing the basic methods to perform the basic tasks. Then, the CONCEL language to define vocabularies of domains and the LINK language for methods formulation are introduced. Finally, the object oriented implementation of a knowledge area is described and a general methodology for application design and maintenance supported by KSM is proposed. To illustrate the concepts and methods, an example of system for intelligent traffic management in a road network is described. This example is followed by a proposal of generalization for reuse of the resulting architecture. Finally, some concluding comments are proposed about the feasibility of using the knowledge modeling tools and methods for general application design.
Resumo:
This paper describes a general approach for real time traffic management support using knowledge based models. Recognizing that human intervention is usually required to apply the current automatic traffic control systems, it is argued that there is a need for an additional intelligent layer to help operators to understand traffic problems and to make the best choice of strategic control actions that modify the assumption framework of the existing systems.
Resumo:
Esta Tesis aborda los problemas de eficiencia de las redes eléctrica desde el punto de vista del consumo. En particular, dicha eficiencia es mejorada mediante el suavizado de la curva de consumo agregado. Este objetivo de suavizado de consumo implica dos grandes mejoras en el uso de las redes eléctricas: i) a corto plazo, un mejor uso de la infraestructura existente y ii) a largo plazo, la reducción de la infraestructura necesaria para suplir las mismas necesidades energéticas. Además, esta Tesis se enfrenta a un nuevo paradigma energético, donde la presencia de generación distribuida está muy extendida en las redes eléctricas, en particular, la generación fotovoltaica (FV). Este tipo de fuente energética afecta al funcionamiento de la red, incrementando su variabilidad. Esto implica que altas tasas de penetración de electricidad de origen fotovoltaico es perjudicial para la estabilidad de la red eléctrica. Esta Tesis trata de suavizar la curva de consumo agregado considerando esta fuente energética. Por lo tanto, no sólo se mejora la eficiencia de la red eléctrica, sino que también puede ser aumentada la penetración de electricidad de origen fotovoltaico en la red. Esta propuesta conlleva grandes beneficios en los campos económicos, social y ambiental. Las acciones que influyen en el modo en que los consumidores hacen uso de la electricidad con el objetivo producir un ahorro energético o un aumento de eficiencia son llamadas Gestión de la Demanda Eléctrica (GDE). Esta Tesis propone dos algoritmos de GDE diferentes para cumplir con el objetivo de suavizado de la curva de consumo agregado. La diferencia entre ambos algoritmos de GDE reside en el marco en el cual estos tienen lugar: el marco local y el marco de red. Dependiendo de este marco de GDE, el objetivo energético y la forma en la que se alcanza este objetivo son diferentes. En el marco local, el algoritmo de GDE sólo usa información local. Este no tiene en cuenta a otros consumidores o a la curva de consumo agregado de la red eléctrica. Aunque esta afirmación pueda diferir de la definición general de GDE, esta vuelve a tomar sentido en instalaciones locales equipadas con Recursos Energéticos Distribuidos (REDs). En este caso, la GDE está enfocada en la maximización del uso de la energía local, reduciéndose la dependencia con la red. El algoritmo de GDE propuesto mejora significativamente el auto-consumo del generador FV local. Experimentos simulados y reales muestran que el auto-consumo es una importante estrategia de gestión energética, reduciendo el transporte de electricidad y alentando al usuario a controlar su comportamiento energético. Sin embargo, a pesar de todas las ventajas del aumento de auto-consumo, éstas no contribuyen al suavizado del consumo agregado. Se han estudiado los efectos de las instalaciones locales en la red eléctrica cuando el algoritmo de GDE está enfocado en el aumento del auto-consumo. Este enfoque puede tener efectos no deseados, incrementando la variabilidad en el consumo agregado en vez de reducirlo. Este efecto se produce porque el algoritmo de GDE sólo considera variables locales en el marco local. Los resultados sugieren que se requiere una coordinación entre las instalaciones. A través de esta coordinación, el consumo debe ser modificado teniendo en cuenta otros elementos de la red y buscando el suavizado del consumo agregado. En el marco de la red, el algoritmo de GDE tiene en cuenta tanto información local como de la red eléctrica. En esta Tesis se ha desarrollado un algoritmo autoorganizado para controlar el consumo de la red eléctrica de manera distribuida. El objetivo de este algoritmo es el suavizado del consumo agregado, como en las implementaciones clásicas de GDE. El enfoque distribuido significa que la GDE se realiza desde el lado de los consumidores sin seguir órdenes directas emitidas por una entidad central. Por lo tanto, esta Tesis propone una estructura de gestión paralela en lugar de una jerárquica como en las redes eléctricas clásicas. Esto implica que se requiere un mecanismo de coordinación entre instalaciones. Esta Tesis pretende minimizar la cantidad de información necesaria para esta coordinación. Para lograr este objetivo, se han utilizado dos técnicas de coordinación colectiva: osciladores acoplados e inteligencia de enjambre. La combinación de estas técnicas para llevar a cabo la coordinación de un sistema con las características de la red eléctrica es en sí mismo un enfoque novedoso. Por lo tanto, este objetivo de coordinación no es sólo una contribución en el campo de la gestión energética, sino también en el campo de los sistemas colectivos. Los resultados muestran que el algoritmo de GDE propuesto reduce la diferencia entre máximos y mínimos de la red eléctrica en proporción a la cantidad de energía controlada por el algoritmo. Por lo tanto, conforme mayor es la cantidad de energía controlada por el algoritmo, mayor es la mejora de eficiencia en la red eléctrica. Además de las ventajas resultantes del suavizado del consumo agregado, otras ventajas surgen de la solución distribuida seguida en esta Tesis. Estas ventajas se resumen en las siguientes características del algoritmo de GDE propuesto: • Robustez: en un sistema centralizado, un fallo o rotura del nodo central provoca un mal funcionamiento de todo el sistema. La gestión de una red desde un punto de vista distribuido implica que no existe un nodo de control central. Un fallo en cualquier instalación no afecta el funcionamiento global de la red. • Privacidad de datos: el uso de una topología distribuida causa de que no hay un nodo central con información sensible de todos los consumidores. Esta Tesis va más allá y el algoritmo propuesto de GDE no utiliza información específica acerca de los comportamientos de los consumidores, siendo la coordinación entre las instalaciones completamente anónimos. • Escalabilidad: el algoritmo propuesto de GDE opera con cualquier número de instalaciones. Esto implica que se permite la incorporación de nuevas instalaciones sin afectar a su funcionamiento. • Bajo coste: el algoritmo de GDE propuesto se adapta a las redes actuales sin requisitos topológicos. Además, todas las instalaciones calculan su propia gestión con un bajo requerimiento computacional. Por lo tanto, no se requiere un nodo central con un alto poder de cómputo. • Rápido despliegue: las características de escalabilidad y bajo coste de los algoritmos de GDE propuestos permiten una implementación rápida. No se requiere una planificación compleja para el despliegue de este sistema. ABSTRACT This Thesis addresses the efficiency problems of the electrical grids from the consumption point of view. In particular, such efficiency is improved by means of the aggregated consumption smoothing. This objective of consumption smoothing entails two major improvements in the use of electrical grids: i) in the short term, a better use of the existing infrastructure and ii) in long term, the reduction of the required infrastructure to supply the same energy needs. In addition, this Thesis faces a new energy paradigm, where the presence of distributed generation is widespread over the electrical grids, in particular, the Photovoltaic (PV) generation. This kind of energy source affects to the operation of the grid by increasing its variability. This implies that a high penetration rate of photovoltaic electricity is pernicious for the electrical grid stability. This Thesis seeks to smooth the aggregated consumption considering this energy source. Therefore, not only the efficiency of the electrical grid is improved, but also the penetration of photovoltaic electricity into the grid can be increased. This proposal brings great benefits in the economic, social and environmental fields. The actions that influence the way that consumers use electricity in order to achieve energy savings or higher efficiency in energy use are called Demand-Side Management (DSM). This Thesis proposes two different DSM algorithms to meet the aggregated consumption smoothing objective. The difference between both DSM algorithms lie in the framework in which they take place: the local framework and the grid framework. Depending on the DSM framework, the energy goal and the procedure to reach this goal are different. In the local framework, the DSM algorithm only uses local information. It does not take into account other consumers or the aggregated consumption of the electrical grid. Although this statement may differ from the general definition of DSM, it makes sense in local facilities equipped with Distributed Energy Resources (DERs). In this case, the DSM is focused on the maximization of the local energy use, reducing the grid dependence. The proposed DSM algorithm significantly improves the self-consumption of the local PV generator. Simulated and real experiments show that self-consumption serves as an important energy management strategy, reducing the electricity transport and encouraging the user to control his energy behavior. However, despite all the advantages of the self-consumption increase, they do not contribute to the smooth of the aggregated consumption. The effects of the local facilities on the electrical grid are studied when the DSM algorithm is focused on self-consumption maximization. This approach may have undesirable effects, increasing the variability in the aggregated consumption instead of reducing it. This effect occurs because the algorithm only considers local variables in the local framework. The results suggest that coordination between these facilities is required. Through this coordination, the consumption should be modified by taking into account other elements of the grid and seeking for an aggregated consumption smoothing. In the grid framework, the DSM algorithm takes into account both local and grid information. This Thesis develops a self-organized algorithm to manage the consumption of an electrical grid in a distributed way. The goal of this algorithm is the aggregated consumption smoothing, as the classical DSM implementations. The distributed approach means that the DSM is performed from the consumers side without following direct commands issued by a central entity. Therefore, this Thesis proposes a parallel management structure rather than a hierarchical one as in the classical electrical grids. This implies that a coordination mechanism between facilities is required. This Thesis seeks for minimizing the amount of information necessary for this coordination. To achieve this objective, two collective coordination techniques have been used: coupled oscillators and swarm intelligence. The combination of these techniques to perform the coordination of a system with the characteristics of the electric grid is itself a novel approach. Therefore, this coordination objective is not only a contribution in the energy management field, but in the collective systems too. Results show that the proposed DSM algorithm reduces the difference between the maximums and minimums of the electrical grid proportionally to the amount of energy controlled by the system. Thus, the greater the amount of energy controlled by the algorithm, the greater the improvement of the efficiency of the electrical grid. In addition to the advantages resulting from the smoothing of the aggregated consumption, other advantages arise from the distributed approach followed in this Thesis. These advantages are summarized in the following features of the proposed DSM algorithm: • Robustness: in a centralized system, a failure or breakage of the central node causes a malfunction of the whole system. The management of a grid from a distributed point of view implies that there is not a central control node. A failure in any facility does not affect the overall operation of the grid. • Data privacy: the use of a distributed topology causes that there is not a central node with sensitive information of all consumers. This Thesis goes a step further and the proposed DSM algorithm does not use specific information about the consumer behaviors, being the coordination between facilities completely anonymous. • Scalability: the proposed DSM algorithm operates with any number of facilities. This implies that it allows the incorporation of new facilities without affecting its operation. • Low cost: the proposed DSM algorithm adapts to the current grids without any topological requirements. In addition, every facility calculates its own management with low computational requirements. Thus, a central computational node with a high computational power is not required. • Quick deployment: the scalability and low cost features of the proposed DSM algorithms allow a quick deployment. A complex schedule of the deployment of this system is not required.
Resumo:
In recent years, the increasing sophistication of embedded multimedia systems and wireless communication technologies has promoted a widespread utilization of video streaming applications. It has been reported in 2013 that youngsters, aged between 13 and 24, spend around 16.7 hours a week watching online video through social media, business websites, and video streaming sites. Video applications have already been blended into people daily life. Traditionally, video streaming research has focused on performance improvement, namely throughput increase and response time reduction. However, most mobile devices are battery-powered, a technology that grows at a much slower pace than either multimedia or hardware developments. Since battery developments cannot satisfy expanding power demand of mobile devices, research interests on video applications technology has attracted more attention to achieve energy-efficient designs. How to efficiently use the limited battery energy budget becomes a major research challenge. In addition, next generation video standards impel to diversification and personalization. Therefore, it is desirable to have mechanisms to implement energy optimizations with greater flexibility and scalability. In this context, the main goal of this dissertation is to find an energy management and optimization mechanism to reduce the energy consumption of video decoders based on the idea of functional-oriented reconfiguration. System battery life is prolonged as the result of a trade-off between energy consumption and video quality. Functional-oriented reconfiguration takes advantage of the similarities among standards to build video decoders reconnecting existing functional units. If a feedback channel from the decoder to the encoder is available, the former can signal the latter changes in either the encoding parameters or the encoding algorithms for energy-saving adaption. The proposed energy optimization and management mechanism is carried out at the decoder end. This mechanism consists of an energy-aware manager, implemented as an additional block of the reconfiguration engine, an energy estimator, integrated into the decoder, and, if available, a feedback channel connected to the encoder end. The energy-aware manager checks the battery level, selects the new decoder description and signals to build a new decoder to the reconfiguration engine. It is worth noting that the analysis of the energy consumption is fundamental for the success of the energy management and optimization mechanism. In this thesis, an energy estimation method driven by platform event monitoring is proposed. In addition, an event filter is suggested to automate the selection of the most appropriate events that affect the energy consumption. At last, a detailed study on the influence of the training data on the model accuracy is presented. The modeling methodology of the energy estimator has been evaluated on different underlying platforms, single-core and multi-core, with different characteristics of workload. All the results show a good accuracy and low on-line computation overhead. The required modifications on the reconfiguration engine to implement the energy-aware manager have been assessed under different scenarios. The results indicate a possibility to lengthen the battery lifetime of the system in two different use-cases.
Resumo:
La modelización es un proceso por el que se obtienen modelos de los procesos del ´mundo real´ mediante la utilización de simplificaciones. Sin embargo, las estimaciones obtenidas con el modelo llevan implícitas incertidumbre que se debe evaluar. Mediante un análisis de sensibilidad se puede mejorar la confianza en los resultados, sin embargo, este paso a veces no se realiza debido básicamente al trabajo que lleva consigo este tipo de análisis. Además, al crear un modelo, hay que mantener un equilibrio entre la obtención de resultados lo más exactos posible mediante un modelo lo más sencillo posible. Por ello, una vez creado un modelo, es imprescindible comprobar si es necesario o no incluir más procesos que en un principio no se habían incluido. Los servicios ecosistémicos son los procesos mediante los cuales los ecosistemas mantienen y satisfacen el bienestar humano. La importancia que los servicios ecosistémicos y sus beneficios asociados tienen, junto con la necesidad de realizar una buena gestión de los mismos, han estimulado la aparición de modelos y herramientas para cuantificarlos. InVEST (Integrated Valuation of Ecosystem Services and Tradoffs) es una de estas herramientas específicas para calcular servicios eco-sistémicos, desarrollada por Natural Capital Project (Universidad de Stanford, EEUU). Como resultado del creciente interés en calcular los servicios eco-sistémicos, se prevé un incremento en la aplicación del InVEST. La investigación desarrollada en esta Tesis pretende ayudar en esas otras importantes fases necesarias después de la creación de un modelo, abarcando los dos siguientes trabajos. El primero es la aplicación de un análisis de sensibilidad al modelo en una cuenca concreta mediante la metodología más adecuada. El segundo es relativo a los procesos dentro de la corriente fluvial que actualmente no se incluyen en el modelo mediante la creación y aplicación de una metodología que estudiara el papel que juegan estos procesos en el modelo InVEST de retención de nutrientes en el área de estudio. Los resultados de esta Tesis contribuirán a comprender la incertidumbre involucrada en el proceso de modelado. También pondrá de manifiesto la necesidad de comprobar el comportamiento de un modelo antes de utilizarlo y en el momento de interpretar los resultados obtenidos. El trabajo en esta Tesis contribuirá a mejorar la plataforma InVEST, que es una herramienta importante en el ámbito de los servicios de los ecosistemas. Dicho trabajo beneficiará a los futuros usuarios de la herramienta, ya sean investigadores (en investigaciones futuras), o técnicos (en futuros trabajos de toma de decisiones o gestión ecosistemas). ABSTRACT Modeling is the process to idealize real-world situations through simplifications in order to obtain a model. However, model estimations lead to uncertainties that have to be evaluated formally. The role of the sensitivity analysis (SA) is to assign model output uncertainty based on the inputs and can increase confidence in model, however, it is often omitted in modelling, usually as a result of the growing effort it involves. In addition, the balance between accuracy and simplicity is not easy to assess. For this reason, when a model is developed, it is necessary to test it in order to understand its behavior and to include, if necessary, more complexity to get a better response. Ecosystem services are the conditions and processes through which natural ecosystems, and their constituent species, sustain and fulfill human life. The relevance of ecosystem services and the need to better manage them and their associated benefits have stimulated the emergence of models and tools to measure them. InVEST, Integrated Valuation of Ecosystem Services and Tradoffs, is one of these ecosystem services-specific tools developed by the Natural Capital Project (Stanford University, USA). As a result of the growing interest in measuring ecosystem services, the use of InVEST is anticipated to grow exponentially in the coming years. However, apart from model development, making a model involves other crucial stages such as its evaluation and application in order to validate estimations. The work developed in this thesis tries to help in this relevant and imperative phase of the modeling process, and does so in two different ways. The first one is to conduct a sensitivity analysis of the model, which consists in choosing and applying a methodology in an area and analyzing the results obtained. The second is related to the in-stream processes that are not modeled in the current model, and consists in creating and applying a methodology for testing the streams role in the InVEST nutrient retention model in a case study, analyzing the results obtained. The results of this Thesis will contribute to the understanding of the uncertainties involved in the modeling process. It will also illustrate the need to check the behavior of every model developed before putting them in production and illustrate the importance of understanding their behavior in terms of correctly interpreting the results obtained in light of uncertainty. The work in this thesis will contribute to improve the InVEST platform, which is an important tool in the field of ecosystem services. Such work will benefit future users, whether they are researchers (in their future research), or technicians (in their future work in ecosystem conservation or management decisions).
Resumo:
Emergency management is one of the key aspects within the day-to-day operation procedures in a highway. Efficiency in the overall response in case of an incident is paramount in reducing the consequences of any incident. However, the approach of highway operators to the issue of incident management is still usually far from a systematic, standardized way. This paper attempts to address the issue and provide several hints on why this happens, and a proposal on how the situation could be overcome. An introduction to a performance based approach to a general system specification will be described, and then applied to a particular road emergency management task. A real testbed has been implemented to show the validity of the proposed approach. Ad-hoc sensors (one camera and one laser scanner) were efficiently deployed to acquire data, and advanced fusion techniques applied at the processing stage to reach the specific user requirements in terms of functionality, flexibility and accuracy.
Resumo:
In this paper we focus on the selection of safeguards in a fuzzy risk analysis and management methodology for information systems (IS). Assets are connected by dependency relationships, and a failure of one asset may affect other assets. After computing impact and risk indicators associated with previously identified threats, we identify and apply safeguards to reduce risks in the IS by minimizing the transmission probabilities of failures throughout the asset network. However, as safeguards have associated costs, the aim is to select the safeguards that minimize costs while keeping the risk within acceptable levels. To do this, we propose a dynamic programming-based method that incorporates simulated annealing to tackle optimizations problems.
Resumo:
One important steps in a successful project-based-learning methodology (PBL) is the process of providing the students with a convenient feedback that allows them to keep on developing their projects or to improve them. However, this task is more difficult in massive courses, especially when the project deadline is close. Besides, the continuous evaluation methodology makes necessary to find ways to objectively and continuously measure students' performance without increasing excessively instructors' work load. In order to alleviate these problems, we have developed a web service that allows students to request personal tutoring assistance during the laboratory sessions by specifying the kind of problem they have and the person who could help them to solve it. This service provides tools for the staff to manage the laboratory, for performing continuous evaluation for all students and for the student collaborators, and to prioritize tutoring according to the progress of the student's project. Additionally, the application provides objective metrics which can be used at the end of the subject during the evaluation process in order to support some students' final scores. Different usability statistics and the results of a subjective evaluation with more than 330 students confirm the success of the proposed application.
Resumo:
Las Field-Programmable Gate Arrays (FPGAs) SRAM se construyen sobre una memoria de configuración de tecnología RAM Estática (SRAM). Presentan múltiples características que las hacen muy interesantes para diseñar sistemas empotrados complejos. En primer lugar presentan un coste no-recurrente de ingeniería (NRE) bajo, ya que los elementos lógicos y de enrutado están pre-implementados (el diseño de usuario define su conexionado). También, a diferencia de otras tecnologías de FPGA, pueden ser reconfiguradas (incluso en campo) un número ilimitado de veces. Es más, las FPGAs SRAM de Xilinx soportan Reconfiguración Parcial Dinámica (DPR), la cual permite reconfigurar la FPGA sin interrumpir la aplicación. Finalmente, presentan una alta densidad de lógica, una alta capacidad de procesamiento y un rico juego de macro-bloques. Sin embargo, un inconveniente de esta tecnología es su susceptibilidad a la radiación ionizante, la cual aumenta con el grado de integración (geometrías más pequeñas, menores tensiones y mayores frecuencias). Esta es una precupación de primer nivel para aplicaciones en entornos altamente radiativos y con requisitos de alta confiabilidad. Este fenómeno conlleva una degradación a largo plazo y también puede inducir fallos instantáneos, los cuales pueden ser reversibles o producir daños irreversibles. En las FPGAs SRAM, los fallos inducidos por radiación pueden aparecer en en dos capas de arquitectura diferentes, que están físicamente superpuestas en el dado de silicio. La Capa de Aplicación (o A-Layer) contiene el hardware definido por el usuario, y la Capa de Configuración contiene la memoria de configuración y la circuitería de soporte. Los fallos en cualquiera de estas capas pueden hacer fracasar el sistema, lo cual puede ser ás o menos tolerable dependiendo de los requisitos de confiabilidad del sistema. En el caso general, estos fallos deben gestionados de alguna manera. Esta tesis trata sobre la gestión de fallos en FPGAs SRAM a nivel de sistema, en el contexto de sistemas empotrados autónomos y confiables operando en un entorno radiativo. La tesis se centra principalmente en aplicaciones espaciales, pero los mismos principios pueden aplicarse a aplicaciones terrenas. Las principales diferencias entre ambas son el nivel de radiación y la posibilidad de mantenimiento. Las diferentes técnicas para la gestión de fallos en A-Layer y C-Layer son clasificados, y sus implicaciones en la confiabilidad del sistema son analizados. Se proponen varias arquitecturas tanto para Gestores de Fallos de una capa como de doble-capa. Para estos últimos se propone una arquitectura novedosa, flexible y versátil. Gestiona las dos capas concurrentemente de manera coordinada, y permite equilibrar el nivel de redundancia y la confiabilidad. Con el objeto de validar técnicas de gestión de fallos dinámicas, se desarrollan dos diferentes soluciones. La primera es un entorno de simulación para Gestores de Fallos de C-Layer, basado en SystemC como lenguaje de modelado y como simulador basado en eventos. Este entorno y su metodología asociada permite explorar el espacio de diseño del Gestor de Fallos, desacoplando su diseño del desarrollo de la FPGA objetivo. El entorno incluye modelos tanto para la C-Layer de la FPGA como para el Gestor de Fallos, los cuales pueden interactuar a diferentes niveles de abstracción (a nivel de configuration frames y a nivel físico JTAG o SelectMAP). El entorno es configurable, escalable y versátil, e incluye capacidades de inyección de fallos. Los resultados de simulación para algunos escenarios son presentados y comentados. La segunda es una plataforma de validación para Gestores de Fallos de FPGAs Xilinx Virtex. La plataforma hardware aloja tres Módulos de FPGA Xilinx Virtex-4 FX12 y dos Módulos de Unidad de Microcontrolador (MCUs) de 32-bits de propósito general. Los Módulos MCU permiten prototipar Gestores de Fallos de C-Layer y A-Layer basados en software. Cada Módulo FPGA implementa un enlace de A-Layer Ethernet (a través de un switch Ethernet) con uno de los Módulos MCU, y un enlace de C-Layer JTAG con el otro. Además, ambos Módulos MCU intercambian comandos y datos a través de un enlace interno tipo UART. Al igual que para el entorno de simulación, se incluyen capacidades de inyección de fallos. Los resultados de pruebas para algunos escenarios son también presentados y comentados. En resumen, esta tesis cubre el proceso completo desde la descripción de los fallos FPGAs SRAM inducidos por radiación, pasando por la identificación y clasificación de técnicas de gestión de fallos, y por la propuesta de arquitecturas de Gestores de Fallos, para finalmente validarlas por simulación y pruebas. El trabajo futuro está relacionado sobre todo con la implementación de Gestores de Fallos de Sistema endurecidos para radiación. ABSTRACT SRAM-based Field-Programmable Gate Arrays (FPGAs) are built on Static RAM (SRAM) technology configuration memory. They present a number of features that make them very convenient for building complex embedded systems. First of all, they benefit from low Non-Recurrent Engineering (NRE) costs, as the logic and routing elements are pre-implemented (user design defines their connection). Also, as opposed to other FPGA technologies, they can be reconfigured (even in the field) an unlimited number of times. Moreover, Xilinx SRAM-based FPGAs feature Dynamic Partial Reconfiguration (DPR), which allows to partially reconfigure the FPGA without disrupting de application. Finally, they feature a high logic density, high processing capability and a rich set of hard macros. However, one limitation of this technology is its susceptibility to ionizing radiation, which increases with technology scaling (smaller geometries, lower voltages and higher frequencies). This is a first order concern for applications in harsh radiation environments and requiring high dependability. Ionizing radiation leads to long term degradation as well as instantaneous faults, which can in turn be reversible or produce irreversible damage. In SRAM-based FPGAs, radiation-induced faults can appear at two architectural layers, which are physically overlaid on the silicon die. The Application Layer (or A-Layer) contains the user-defined hardware, and the Configuration Layer (or C-Layer) contains the (volatile) configuration memory and its support circuitry. Faults at either layers can imply a system failure, which may be more ore less tolerated depending on the dependability requirements. In the general case, such faults must be managed in some way. This thesis is about managing SRAM-based FPGA faults at system level, in the context of autonomous and dependable embedded systems operating in a radiative environment. The focus is mainly on space applications, but the same principles can be applied to ground applications. The main differences between them are the radiation level and the possibility for maintenance. The different techniques for A-Layer and C-Layer fault management are classified and their implications in system dependability are assessed. Several architectures are proposed, both for single-layer and dual-layer Fault Managers. For the latter, a novel, flexible and versatile architecture is proposed. It manages both layers concurrently in a coordinated way, and allows balancing redundancy level and dependability. For the purpose of validating dynamic fault management techniques, two different solutions are developed. The first one is a simulation framework for C-Layer Fault Managers, based on SystemC as modeling language and event-driven simulator. This framework and its associated methodology allows exploring the Fault Manager design space, decoupling its design from the target FPGA development. The framework includes models for both the FPGA C-Layer and for the Fault Manager, which can interact at different abstraction levels (at configuration frame level and at JTAG or SelectMAP physical level). The framework is configurable, scalable and versatile, and includes fault injection capabilities. Simulation results for some scenarios are presented and discussed. The second one is a validation platform for Xilinx Virtex FPGA Fault Managers. The platform hosts three Xilinx Virtex-4 FX12 FPGA Modules and two general-purpose 32-bit Microcontroller Unit (MCU) Modules. The MCU Modules allow prototyping software-based CLayer and A-Layer Fault Managers. Each FPGA Module implements one A-Layer Ethernet link (through an Ethernet switch) with one of the MCU Modules, and one C-Layer JTAG link with the other. In addition, both MCU Modules exchange commands and data over an internal UART link. Similarly to the simulation framework, fault injection capabilities are implemented. Test results for some scenarios are also presented and discussed. In summary, this thesis covers the whole process from describing the problem of radiationinduced faults in SRAM-based FPGAs, then identifying and classifying fault management techniques, then proposing Fault Manager architectures and finally validating them by simulation and test. The proposed future work is mainly related to the implementation of radiation-hardened System Fault Managers.
Resumo:
La modelización es un proceso por el que se obtienen modelos de los procesos del ´mundo real´ mediante la utilización de simplificaciones. Sin embargo, las estimaciones obtenidas con el modelo llevan implícitas incertidumbre que se debe evaluar. Mediante un análisis de sensibilidad se puede mejorar la confianza en los resultados, sin embargo, este paso a veces no se realiza debido básicamente al trabajo que lleva consigo este tipo de análisis. Además, al crear un modelo, hay que mantener un equilibrio entre la obtención de resultados lo más exactos posible mediante un modelo lo más sencillo posible. Por ello, una vez creado un modelo, es imprescindible comprobar si es necesario o no incluir más procesos que en un principio no se habían incluido. Los servicios ecosistémicos son los procesos mediante los cuales los ecosistemas mantienen y satisfacen el bienestar humano. La importancia que los servicios ecosistémicos y sus beneficios asociados tienen, junto con la necesidad de realizar una buena gestión de los mismos, han estimulado la aparición de modelos y herramientas para cuantificarlos. InVEST (Integrated Valuation of Ecosystem Services and Tradoffs) es una de estas herramientas específicas para calcular servicios eco-sistémicos, desarrollada por Natural Capital Project (Universidad de Stanford, EEUU). Como resultado del creciente interés en calcular los servicios eco-sistémicos, se prevé un incremento en la aplicación del InVEST. La investigación desarrollada en esta Tesis pretende ayudar en esas otras importantes fases necesarias después de la creación de un modelo, abarcando los dos siguientes trabajos. El primero es la aplicación de un análisis de sensibilidad al modelo en una cuenca concreta mediante la metodología más adecuada. El segundo es relativo a los procesos dentro de la corriente fluvial que actualmente no se incluyen en el modelo mediante la creación y aplicación de una metodología que estudiara el papel que juegan estos procesos en el modelo InVEST de retención de nutrientes en el área de estudio. Los resultados de esta Tesis contribuirán a comprender la incertidumbre involucrada en el proceso de modelado. También pondrá de manifiesto la necesidad de comprobar el comportamiento de un modelo antes de utilizarlo y en el momento de interpretar los resultados obtenidos. El trabajo en esta Tesis contribuirá a mejorar la plataforma InVEST, que es una herramienta importante en el ámbito de los servicios de los ecosistemas. Dicho trabajo beneficiará a los futuros usuarios de la herramienta, ya sean investigadores (en investigaciones futuras), o técnicos (en futuros trabajos de toma de decisiones o gestión ecosistemas). ABSTRACT Modeling is the process to idealize real-world situations through simplifications in order to obtain a model. However, model estimations lead to uncertainties that have to be evaluated formally. The role of the sensitivity analysis (SA) is to assign model output uncertainty based on the inputs and can increase confidence in model, however, it is often omitted in modelling, usually as a result of the growing effort it involves. In addition, the balance between accuracy and simplicity is not easy to assess. For this reason, when a model is developed, it is necessary to test it in order to understand its behavior and to include, if necessary, more complexity to get a better response. Ecosystem services are the conditions and processes through which natural ecosystems, and their constituent species, sustain and fulfill human life. The relevance of ecosystem services and the need to better manage them and their associated benefits have stimulated the emergence of models and tools to measure them. InVEST, Integrated Valuation of Ecosystem Services and Tradoffs, is one of these ecosystem services-specific tools developed by the Natural Capital Project (Stanford University, USA). As a result of the growing interest in measuring ecosystem services, the use of InVEST is anticipated to grow exponentially in the coming years. However, apart from model development, making a model involves other crucial stages such as its evaluation and application in order to validate estimations. The work developed in this thesis tries to help in this relevant and imperative phase of the modeling process, and does so in two different ways. The first one is to conduct a sensitivity analysis of the model, which consists in choosing and applying a methodology in an area and analyzing the results obtained. The second is related to the in-stream processes that are not modeled in the current model, and consists in creating and applying a methodology for testing the streams role in the InVEST nutrient retention model in a case study, analyzing the results obtained. The results of this Thesis will contribute to the understanding of the uncertainties involved in the modeling process. It will also illustrate the need to check the behavior of every model developed before putting them in production and illustrate the importance of understanding their behavior in terms of correctly interpreting the results obtained in light of uncertainty. The work in this thesis will contribute to improve the InVEST platform, which is an important tool in the field of ecosystem services. Such work will benefit future users, whether they are researchers (in their future research), or technicians (in their future work in ecosystem conservation or management decisions).
Resumo:
PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.