21 resultados para Diluição termodinâmica
Resumo:
Un modelo térmico de una caja de engranajes brinda la oportunidad de realizar un estudio más profundo sobre el calor disipado, relacionado con la pérdida de rendimiento en la transmisión por engranajes, hasta ahora sólo conocido indirectamente a través de ciertos ensayos. Un programa basado en un sistema de ecuaciones diferenciales ordinarias fue desarrollado en MATLAB para hacer el modelado térmico de una caja de ensayos de engranajes FZG. Dependiendo de las condiciones de funcionamiento del equipo, como son el nivel de precarga aplicada a los engranajes, el nivel de aceite usado en lubricación por barbotaje, la velocidad de la rueda y el tipo de acabado de los engranajes, se obtendrá distintos resultados. El modelo está basado en una red térmica en la cual cada nodo representa un elemento del equipo. Con las resistencias térmicas, los valores de las pérdidas de potencia (generadores de calor) y la inercia térmica de cada elemento, la evolución de la temperatura en el tiempo fue obtenida aplicando el primer principio de la termodinámica a cada nodo en cada instante de tiempo. Gracias a esto, la transferencia de calor entre los distintos elementos, las pérdidas de potencia, las resistencias térmicas y otros posibles parámetros (ratio del calor transmitido de las ruedas al aceite sobre las pérdidas por fricción) fueron también estimados en cada instante de tiempo en forma de matrices o vectores. Los resultados muestran una amplia capacidad y versatilidad del programa en términos de análisis térmico: el sentido y magnitud del flujo calorífico, herramientas visuales como la animación de la red térmica y de los elementos de la caja conforme se va calentando y la posibilidad de análisis térmico para diferentes condiciones de funcionamiento con sólo cambiar ciertas variables en el programa. Con estas funciones es posible dar un enfoque y abordar el estudio de la mínima cantidad de lubricante necesaria y otras maneras de amortiguar el sobrecalentamiento, además de conocer la temperatura de contacto entre engranajes. Esta temperatura, que es imposible de determinar experimentalmente, supondría un gran avance para tratar el desgaste superficial de engranajes.
Resumo:
La derivación parcial de un campo vectorial respecto de una variable escalar es discutida en este documento tomando el tiempo como ejemplo sin que ello suponga pérdida de generalidad. Las conclusiones obtenidas de dicho análisis también pueden extrapolarse a escenarios donde se usen otras variables escalares, como la frecuencia en electromagnetismo o la temperatura en termodinámica.
Resumo:
Esta tesis aborda la formulación, análisis e implementación de métodos numéricos de integración temporal para la solución de sistemas disipativos suaves de dimensión finita o infinita de manera que su estructura continua sea conservada. Se entiende por dichos sistemas aquellos que involucran acoplamiento termo-mecánico y/o efectos disipativos internos modelados por variables internas que siguen leyes continuas, de modo que su evolución es considerada suave. La dinámica de estos sistemas está gobernada por las leyes de la termodinámica y simetrías, las cuales constituyen la estructura que se pretende conservar de forma discreta. Para ello, los sistemas disipativos se describen geométricamente mediante estructuras metriplécticas que identifican claramente las partes reversible e irreversible de la evolución del sistema. Así, usando una de estas estructuras conocida por las siglas (en inglés) de GENERIC, la estructura disipativa de los sistemas es identificada del mismo modo que lo es la Hamiltoniana para sistemas conservativos. Con esto, métodos (EEM) con precisión de segundo orden que conservan la energía, producen entropía y conservan los impulsos lineal y angular son formulados mediante el uso del operador derivada discreta introducido para asegurar la conservación de la Hamiltoniana y las simetrías de sistemas conservativos. Siguiendo estas directrices, se formulan dos tipos de métodos EEM basados en el uso de la temperatura o de la entropía como variable de estado termodinámica, lo que presenta importantes implicaciones que se discuten a lo largo de esta tesis. Entre las cuales cabe destacar que las condiciones de contorno de Dirichlet son naturalmente impuestas con la formulación basada en la temperatura. Por último, se validan dichos métodos y se comprueban sus mejores prestaciones en términos de la estabilidad y robustez en comparación con métodos estándar. This dissertation is concerned with the formulation, analysis and implementation of structure-preserving time integration methods for the solution of the initial(-boundary) value problems describing the dynamics of smooth dissipative systems, either finite- or infinite-dimensional ones. Such systems are understood as those involving thermo-mechanical coupling and/or internal dissipative effects modeled by internal state variables considered to be smooth in the sense that their evolutions follow continuos laws. The dynamics of such systems are ruled by the laws of thermodynamics and symmetries which constitutes the structure meant to be preserved in the numerical setting. For that, dissipative systems are geometrically described by metriplectic structures which clearly identify the reversible and irreversible parts of their dynamical evolution. In particular, the framework known by the acronym GENERIC is used to reveal the systems' dissipative structure in the same way as the Hamiltonian is for conserving systems. Given that, energy-preserving, entropy-producing and momentum-preserving (EEM) second-order accurate methods are formulated using the discrete derivative operator that enabled the formulation of Energy-Momentum methods ensuring the preservation of the Hamiltonian and symmetries for conservative systems. Following these guidelines, two kind of EEM methods are formulated in terms of entropy and temperature as a thermodynamical state variable, involving important implications discussed throughout the dissertation. Remarkably, the formulation in temperature becomes central to accommodate Dirichlet boundary conditions. EEM methods are finally validated and proved to exhibit enhanced numerical stability and robustness properties compared to standard ones.
Resumo:
En este trabajo se estudia la modelización y optimización de procesos industriales de separación mediante el empleo de mezclas de líquidos iónicos como disolventes. Los disolventes habitualmente empleados en procesos de absorción o extracción suelen ser componentes orgánicos muy volátiles y dañinos para la salud humana. Las innovadoras propiedades que presentan los líquidos iónicos, los convierten en alternativas adecuadas para solucionar estos problemas. La presión de vapor de estos compuestos es muy baja y apenas varía con la temperatura. Por tanto, estos compuestos apenas se evaporan incluso a temperaturas altas. Esto supone una gran ventaja en cuanto al empleo de estos compuestos como disolventes industriales ya que permite el reciclaje continuo del disolvente al final del proceso sin necesidad de introducir disolvente fresco debido a la evaporación del mismo. Además, al no evaporarse, estos compuestos no suponen un peligro para la salud humana por inhalación; al contrario que otros disolventes como el benceno. El único peligro para la salud que tienen estos compuestos es por tanto el de contacto directo o ingesta, aunque de hecho muchos Líquidos Iónicos son inocuos con lo cual no existe peligro para la salud ni siquiera a través de estas vías. Los procesos de separación estudiados en este trabajo, se rigen por la termodinámica de fases, concretamente el equilibrio líquido-vapor. Para la predicción de los equilibrios se ha optado por el empleo de modelos COSMO (COnductor-like Screening MOdel). Estos modelos tienen su origen en el empleo de la termodinámica de solvatación y en la mecánica cuántica. En el desarrollo de procesos y productos, químicos e ingenieros frecuentemente precisan de la realización de cálculos de predicción de equilibrios de fase. Previamente al desarrollo de los modelos COSMO, se usaban métodos de contribución de grupos como UNIFAC o modelos de coeficientes de actividad como NRTL.La desventaja de estos métodos, es que requieren parámetros de interacción binaria que únicamente pueden obtenerse mediante ajustes por regresión a partir de resultados experimentales. Debido a esto, estos métodos apenas tienen aplicabilidad para compuestos con grupos funcionales novedosos debido a que no se dispone de datos experimentales para llevar a cabo los ajustes por regresión correspondientes. Una alternativa a estos métodos, es el empleo de modelos de solvatación basados en la química cuántica para caracterizar las interacciones moleculares y tener en cuenta la no idealidad de la fase líquida. Los modelos COSMO, permiten la predicción de equilibrios sin la necesidad de ajustes por regresión a partir de resultados experimentales. Debido a la falta de resultados experimentales de equilibrios líquido-vapor de mezclas en las que se ven involucrados los líquidos iónicos, el empleo de modelos COSMO es una buena alternativa para la predicción de equilibrios de mezclas con este tipo de materiales. Los modelos COSMO emplean las distribuciones superficiales de carga polarizada (sigma profiles) de los compuestos involucrados en la mezcla estudiada para la predicción de los coeficientes de actividad de la misma, definiéndose el sigma profile de una molécula como la distribución de probabilidad de densidad de carga superficial de dicha molécula. Dos de estos modelos son COSMO-RS (Realistic Solvation) y COSMO-SAC (Segment Activity Coefficient). El modelo COSMO-RS fue la primera extensión de los modelos de solvatación basados en continuos dieléctricos a la termodinámica de fases líquidas mientras que el modelo COSMO-SAC es una variación de este modelo, tal y como se explicará posteriormente. Concretamente en este trabajo se ha empleado el modelo COSMO-SAC para el cálculo de los coeficientes de actividad de las mezclas estudiadas. Los sigma profiles de los líquidos iónicos se han obtenido mediante el empleo del software de química computacional Turbomole y el paquete químico-cuántico COSMOtherm. El software Turbomole permite optimizar la geometría de la molécula para hallar la configuración más estable mientras que el paquete COSMOtherm permite la obtención del perfil sigma del compuesto mediante el empleo de los datos proporcionados por Turbomole. Por otra parte, los sigma profiles del resto de componentes se han obtenido de la base de datos Virginia Tech-2005 Sigma Profile Database. Para la predicción del equilibrio a partir de los coeficientes de actividad se ha empleado la Ley de Raoult modificada. Se ha supuesto por tanto que la fracción de cada componente en el vapor es proporcional a la fracción del mismo componente en el líquido, dónde la constante de proporcionalidad es el coeficiente de actividad del componente en la mezcla multiplicado por la presión de vapor del componente y dividido por la presión del sistema. Las presiones de vapor de los componentes se han obtenido aplicando la Ley de Antoine. Esta ecuación describe la relación entre la temperatura y la presión de vapor y se deduce a partir de la ecuación de Clausius-Clapeyron. Todos estos datos se han empleado para la modelización de una separación flash usando el algoritmo de Rachford-Rice. El valor de este modelo reside en la deducción de una función que relaciona las constantes de equilibrio, composición total y fracción de vapor. Para llevar a cabo la implementación del modelado matemático descrito, se ha programado un código empleando el software MATLAB de análisis numérico. Para comprobar la fiabilidad del código programado, se compararon los resultados obtenidos en la predicción de equilibrios de mezclas mediante el código con los resultados obtenidos mediante el simulador ASPEN PLUS de procesos químicos. Debido a la falta de datos relativos a líquidos iónicos en la base de datos de ASPEN PLUS, se han introducido estos componentes como pseudocomponentes, de manera que se han introducido únicamente los datos necesarios de estos componentes para realizar las simulaciones. El modelo COSMO-SAC se encuentra implementado en ASPEN PLUS, de manera que introduciendo los sigma profiles, los volúmenes de la cavidad y las presiones de vapor de los líquidos iónicos, es posible predecir equilibrios líquido-vapor en los que se ven implicados este tipo de materiales. De esta manera pueden compararse los resultados obtenidos con ASPEN PLUS y como el código programado en MATLAB y comprobar la fiabilidad del mismo. El objetivo principal del presente Trabajo Fin de Máster es la optimización de mezclas multicomponente de líquidos iónicos para maximizar la eficiencia de procesos de separación y minimizar los costes de los mismos. La estructura de este problema es la de un problema de optimización no lineal con variables discretas y continuas, es decir, un problema de optimización MINLP (Mixed Integer Non-Linear Programming). Tal y como se verá posteriormente, el modelo matemático de este problema es no lineal. Por otra parte, las variables del mismo son tanto continuas como binarias. Las variables continuas se corresponden con las fracciones molares de los líquidos iónicos presentes en las mezclas y con el caudal de la mezcla de líquidos iónicos. Por otra parte, también se ha introducido un número de variables binarias igual al número de líquidos iónicos presentes en la mezcla. Cada una de estas variables multiplican a las fracciones molares de sus correspondientes líquidos iónicos, de manera que cuando dicha variable es igual a 1, el líquido se encuentra en la mezcla mientras que cuando dicha variable es igual a 0, el líquido iónico no se encuentra presente en dicha mezcla. El empleo de este tipo de variables obliga por tanto a emplear algoritmos para la resolución de problemas de optimización MINLP ya que si todas las variables fueran continuas, bastaría con el empleo de algoritmos para la resolución de problemas de optimización NLP (Non-Linear Programming). Se han probado por tanto diversos algoritmos presentes en el paquete OPTI Toolbox de MATLAB para comprobar cuál es el más adecuado para abordar este problema. Finalmente, una vez validado el código programado, se han optimizado diversas mezclas de líquidos iónicos para lograr la máxima recuperación de compuestos aromáticos en un proceso de absorción de mezclas orgánicas. También se ha usado este código para la minimización del coste correspondiente a la compra de los líquidos iónicos de la mezcla de disolventes empleada en la operación de absorción. En este caso ha sido necesaria la introducción de restricciones relativas a la recuperación de aromáticos en la fase líquida o a la pureza de la mezcla obtenida una vez separada la mezcla de líquidos iónicos. Se han modelizado los dos problemas descritos previamente (maximización de la recuperación de Benceno y minimización del coste de operación) empleando tanto únicamente variables continuas (correspondientes a las fracciones o cantidades molares de los líquidos iónicos) como variables continuas y binarias (correspondientes a cada uno de los líquidos iónicos implicados en las mezclas).
Resumo:
Las transformaciones martensíticas (MT) se definen como un cambio en la estructura del cristal para formar una fase coherente o estructuras de dominio multivariante, a partir de la fase inicial con la misma composición, debido a pequeños intercambios o movimientos atómicos cooperativos. En el siglo pasado se han descubierto MT en diferentes materiales partiendo desde los aceros hasta las aleaciones con memoria de forma, materiales cerámicos y materiales inteligentes. Todos muestran propiedades destacables como alta resistencia mecánica, memoria de forma, efectos de superelasticidad o funcionalidades ferroicas como la piezoelectricidad, electro y magneto-estricción etc. Varios modelos/teorías se han desarrollado en sinergia con el desarrollo de la física del estado sólido para entender por qué las MT generan microstructuras muy variadas y ricas que muestran propiedades muy interesantes. Entre las teorías mejor aceptadas se encuentra la Teoría Fenomenológica de la Cristalografía Martensítica (PTMC, por sus siglas en inglés) que predice el plano de hábito y las relaciones de orientación entre la austenita y la martensita. La reinterpretación de la teoría PTMC en un entorno de mecánica del continuo (CM-PTMC) explica la formación de los dominios de estructuras multivariantes, mientras que la teoría de Landau con dinámica de inercia desentraña los mecanismos físicos de los precursores y otros comportamientos dinámicos. La dinámica de red cristalina desvela la reducción de la dureza acústica de las ondas de tensión de red que da lugar a transformaciones débiles de primer orden en el desplazamiento. A pesar de las diferencias entre las teorías estáticas y dinámicas dado su origen en diversas ramas de la física (por ejemplo mecánica continua o dinámica de la red cristalina), estas teorías deben estar inherentemente conectadas entre sí y mostrar ciertos elementos en común en una perspectiva unificada de la física. No obstante las conexiones físicas y diferencias entre las teorías/modelos no se han tratado hasta la fecha, aun siendo de importancia crítica para la mejora de modelos de MT y para el desarrollo integrado de modelos de transformaciones acopladas de desplazamiento-difusión. Por lo tanto, esta tesis comenzó con dos objetivos claros. El primero fue encontrar las conexiones físicas y las diferencias entre los modelos de MT mediante un análisis teórico detallado y simulaciones numéricas. El segundo objetivo fue expandir el modelo de Landau para ser capaz de estudiar MT en policristales, en el caso de transformaciones acopladas de desplazamiento-difusión, y en presencia de dislocaciones. Comenzando con un resumen de los antecedente, en este trabajo se presentan las bases físicas de los modelos actuales de MT. Su capacidad para predecir MT se clarifica mediante el ansis teórico y las simulaciones de la evolución microstructural de MT de cúbicoatetragonal y cúbicoatrigonal en 3D. Este análisis revela que el modelo de Landau con representación irreducible de la deformación transformada es equivalente a la teoría CM-PTMC y al modelo de microelasticidad para predecir los rasgos estáticos durante la MT, pero proporciona una mejor interpretación de los comportamientos dinámicos. Sin embargo, las aplicaciones del modelo de Landau en materiales estructurales están limitadas por su complejidad. Por tanto, el primer resultado de esta tesis es el desarrollo del modelo de Landau nolineal con representación irreducible de deformaciones y de la dinámica de inercia para policristales. La simulación demuestra que el modelo propuesto es consistente fcamente con el CM-PTMC en la descripción estática, y también permite una predicción del diagrama de fases con la clásica forma ’en C’ de los modos de nucleación martensítica activados por la combinación de temperaturas de enfriamiento y las condiciones de tensión aplicada correlacionadas con la transformación de energía de Landau. Posteriomente, el modelo de Landau de MT es integrado con un modelo de transformación de difusión cuantitativa para elucidar la relajación atómica y la difusión de corto alcance de los elementos durante la MT en acero. El modelo de transformaciones de desplazamiento y difusión incluye los efectos de la relajación en borde de grano para la nucleación heterogenea y la evolución espacio-temporal de potenciales de difusión y movilidades químicas mediante el acoplamiento de herramientas de cálculo y bases de datos termo-cinéticos de tipo CALPHAD. El modelo se aplica para estudiar la evolución microstructural de aceros al carbono policristalinos procesados por enfriamiento y partición (Q&P) en 2D. La microstructura y la composición obtenida mediante la simulación se comparan con los datos experimentales disponibles. Los resultados muestran el importante papel jugado por las diferencias en movilidad de difusión entre la fase austenita y martensita en la distibución de carbono en las aceros. Finalmente, un modelo multi-campo es propuesto mediante la incorporación del modelo de dislocación en grano-grueso al modelo desarrollado de Landau para incluir las diferencias morfológicas entre aceros y aleaciones con memoria de forma con la misma ruptura de simetría. La nucleación de dislocaciones, la formación de la martensita ’butterfly’, y la redistribución del carbono después del revenido son bien representadas en las simulaciones 2D del estudio de la evolución de la microstructura en aceros representativos. Con dicha simulación demostramos que incluyendo las dislocaciones obtenemos para dichos aceros, una buena comparación frente a los datos experimentales de la morfología de los bordes de macla, la existencia de austenita retenida dentro de la martensita, etc. Por tanto, basado en un modelo integral y en el desarrollo de códigos durante esta tesis, se ha creado una herramienta de modelización multiescala y multi-campo. Dicha herramienta acopla la termodinámica y la mecánica del continuo en la macroescala con la cinética de difusión y los modelos de campo de fase/Landau en la mesoescala, y también incluye los principios de la cristalografía y de la dinámica de red cristalina en la microescala. ABSTRACT Martensitic transformation (MT), in a narrow sense, is defined as the change of the crystal structure to form a coherent phase, or multi-variant domain structures out from a parent phase with the same composition, by small shuffles or co-operative movements of atoms. Over the past century, MTs have been discovered in different materials from steels to shape memory alloys, ceramics, and smart materials. They lead to remarkable properties such as high strength, shape memory/superelasticity effects or ferroic functionalities including piezoelectricity, electro- and magneto-striction, etc. Various theories/models have been developed, in synergy with development of solid state physics, to understand why MT can generate these rich microstructures and give rise to intriguing properties. Among the well-established theories, the Phenomenological Theory of Martensitic Crystallography (PTMC) is able to predict the habit plane and the orientation relationship between austenite and martensite. The re-interpretation of the PTMC theory within a continuum mechanics framework (CM-PTMC) explains the formation of the multivariant domain structures, while the Landau theory with inertial dynamics unravels the physical origins of precursors and other dynamic behaviors. The crystal lattice dynamics unveils the acoustic softening of the lattice strain waves leading to the weak first-order displacive transformation, etc. Though differing in statics or dynamics due to their origins in different branches of physics (e.g. continuum mechanics or crystal lattice dynamics), these theories should be inherently connected with each other and show certain elements in common within a unified perspective of physics. However, the physical connections and distinctions among the theories/models have not been addressed yet, although they are critical to further improving the models of MTs and to develop integrated models for more complex displacivediffusive coupled transformations. Therefore, this thesis started with two objectives. The first one was to reveal the physical connections and distinctions among the models of MT by means of detailed theoretical analyses and numerical simulations. The second objective was to expand the Landau model to be able to study MTs in polycrystals, in the case of displacive-diffusive coupled transformations, and in the presence of the dislocations. Starting with a comprehensive review, the physical kernels of the current models of MTs are presented. Their ability to predict MTs is clarified by means of theoretical analyses and simulations of the microstructure evolution of cubic-to-tetragonal and cubic-to-trigonal MTs in 3D. This analysis reveals that the Landau model with irreducible representation of the transformed strain is equivalent to the CM-PTMC theory and microelasticity model to predict the static features during MTs but provides better interpretation of the dynamic behaviors. However, the applications of the Landau model in structural materials are limited due its the complexity. Thus, the first result of this thesis is the development of a nonlinear Landau model with irreducible representation of strains and the inertial dynamics for polycrystals. The simulation demonstrates that the updated model is physically consistent with the CM-PTMC in statics, and also permits a prediction of a classical ’C shaped’ phase diagram of martensitic nucleation modes activated by the combination of quenching temperature and applied stress conditions interplaying with Landau transformation energy. Next, the Landau model of MT is further integrated with a quantitative diffusional transformation model to elucidate atomic relaxation and short range diffusion of elements during the MT in steel. The model for displacive-diffusive transformations includes the effects of grain boundary relaxation for heterogeneous nucleation and the spatio-temporal evolution of diffusion potentials and chemical mobility by means of coupling with a CALPHAD-type thermo-kinetic calculation engine and database. The model is applied to study for the microstructure evolution of polycrystalline carbon steels processed by the Quenching and Partitioning (Q&P) process in 2D. The simulated mixed microstructure and composition distribution are compared with available experimental data. The results show that the important role played by the differences in diffusion mobility between austenite and martensite to the partitioning in carbon steels. Finally, a multi-field model is proposed by incorporating the coarse-grained dislocation model to the developed Landau model to account for the morphological difference between steels and shape memory alloys with same symmetry breaking. The dislocation nucleation, the formation of the ’butterfly’ martensite, and the redistribution of carbon after tempering are well represented in the 2D simulations for the microstructure evolution of the representative steels. With the simulation, we demonstrate that the dislocations account for the experimental observation of rough twin boundaries, retained austenite within martensite, etc. in steels. Thus, based on the integrated model and the in-house codes developed in thesis, a preliminary multi-field, multiscale modeling tool is built up. The new tool couples thermodynamics and continuum mechanics at the macroscale with diffusion kinetics and phase field/Landau model at the mesoscale, and also includes the essentials of crystallography and crystal lattice dynamics at microscale.
Resumo:
El objetivo del conjunto de documentos que recogen tanto el EPS como el Proyecto de Construcción posterior es el de proporcionar la información necesaria para poder construir una Central de Ciclo Combinado de 300 MW en el municipio madrileño de San Martín de Valdeiglesias. Las alternativas propuestas son distintas variantes de elementos de la central, manteniendo en todas ellas los ciclos termodinámicos que caracterizan las centrales de ciclo combinado. Esencialmente, se combinan dos ciclos termodinámicos, uno de vapor y otro de gas, para aumentar la eficiencia termodinámica del conjunto