42 resultados para Decomposable Ordered Set


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. We study the problem of efficient, scalable set-sharing analysis of logic programs. We use the idea of representing sharing information as a pair of abstract substitutions, one of which is a worst-case sharing representation called a clique set, which was previously proposed for the case of inferring pair-sharing. We use the clique-set representation for (1) inferring actual set-sharing information, and (2) analysis within a top-down framework. In particular, we define the new abstract functions required by standard top-down analyses, both for sharing alone and also for the case of including freeness in addition to sharing. We use cliques both as an alternative representation and as widening, defining several widening operators. Our experimental evaluation supports the conclusión that, for inferring set-sharing, as it was the case for inferring pair-sharing, precisión losses are limited, while useful efficieney gains are obtained. We also derive useful conclusions regarding the interactions between thresholds, precisión, efficieney and cost of widening. At the limit, the clique-set representation allowed analyzing some programs that exceeded memory capacity using classical sharing representations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Set-Sharing analysis, the classic Jacobs and Langen's domain, has been widely used to infer several interesting properties of programs at compile-time such as occurs-check reduction, automatic parallelization, flnite-tree analysis, etc. However, performing abstract uniflcation over this domain implies the use of a closure operation which makes the number of sharing groups grow exponentially. Much attention has been given in the literature to mitígate this key inefficiency in this otherwise very useful domain. In this paper we present two novel alternative representations for the traditional set-sharing domain, tSH and tNSH. which compress efficiently the number of elements into fewer elements enabling more efficient abstract operations, including abstract uniflcation, without any loss of accuracy. Our experimental evaluation supports that both representations can reduce dramatically the number of sharing groups showing they can be more practical solutions towards scalable set-sharing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of efñcient, scalable set-sharing analysis of logic programs. We use the idea of representing sharing information as a pair of abstract substitutions, one of which is a worst-case sharing representation called a clique set, which was previously proposed for the case of inferring pair-sharing. We use the clique-set representation for (1) inferring actual set-sharing information, and (2) analysis within a topdown framework. In particular, we define the abstract functions required by standard top-down analyses, both for sharing alone and also for the case of including freeness in addition to sharing. Our experimental evaluation supports the conclusión that, for inferring set-sharing, as it was the case for inferring pair-sharing, precisión losses are limited, while useful efñciency gains are obtained. At the limit, the clique-set representation allowed analyzing some programs that exceeded memory capacity using classical sharing representations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La temperatura es una preocupación que juega un papel protagonista en el diseño de circuitos integrados modernos. El importante aumento de las densidades de potencia que conllevan las últimas generaciones tecnológicas ha producido la aparición de gradientes térmicos y puntos calientes durante el funcionamiento normal de los chips. La temperatura tiene un impacto negativo en varios parámetros del circuito integrado como el retardo de las puertas, los gastos de disipación de calor, la fiabilidad, el consumo de energía, etc. Con el fin de luchar contra estos efectos nocivos, la técnicas de gestión dinámica de la temperatura (DTM) adaptan el comportamiento del chip en función en la información que proporciona un sistema de monitorización que mide en tiempo de ejecución la información térmica de la superficie del dado. El campo de la monitorización de la temperatura en el chip ha llamado la atención de la comunidad científica en los últimos años y es el objeto de estudio de esta tesis. Esta tesis aborda la temática de control de la temperatura en el chip desde diferentes perspectivas y niveles, ofreciendo soluciones a algunos de los temas más importantes. Los niveles físico y circuital se cubren con el diseño y la caracterización de dos nuevos sensores de temperatura especialmente diseñados para los propósitos de las técnicas DTM. El primer sensor está basado en un mecanismo que obtiene un pulso de anchura variable dependiente de la relación de las corrientes de fuga con la temperatura. De manera resumida, se carga un nodo del circuito y posteriormente se deja flotando de tal manera que se descarga a través de las corrientes de fugas de un transistor; el tiempo de descarga del nodo es la anchura del pulso. Dado que la anchura del pulso muestra una dependencia exponencial con la temperatura, la conversión a una palabra digital se realiza por medio de un contador logarítmico que realiza tanto la conversión tiempo a digital como la linealización de la salida. La estructura resultante de esta combinación de elementos se implementa en una tecnología de 0,35 _m. El sensor ocupa un área muy reducida, 10.250 nm2, y consume muy poca energía, 1.05-65.5nW a 5 muestras/s, estas cifras superaron todos los trabajos previos en el momento en que se publicó por primera vez y en el momento de la publicación de esta tesis, superan a todas las implementaciones anteriores fabricadas en el mismo nodo tecnológico. En cuanto a la precisión, el sensor ofrece una buena linealidad, incluso sin calibrar; se obtiene un error 3_ de 1,97oC, adecuado para tratar con las aplicaciones de DTM. Como se ha explicado, el sensor es completamente compatible con los procesos de fabricación CMOS, este hecho, junto con sus valores reducidos de área y consumo, lo hacen especialmente adecuado para la integración en un sistema de monitorización de DTM con un conjunto de monitores empotrados distribuidos a través del chip. Las crecientes incertidumbres de proceso asociadas a los últimos nodos tecnológicos comprometen las características de linealidad de nuestra primera propuesta de sensor. Con el objetivo de superar estos problemas, proponemos una nueva técnica para obtener la temperatura. La nueva técnica también está basada en las dependencias térmicas de las corrientes de fuga que se utilizan para descargar un nodo flotante. La novedad es que ahora la medida viene dada por el cociente de dos medidas diferentes, en una de las cuales se altera una característica del transistor de descarga |la tensión de puerta. Este cociente resulta ser muy robusto frente a variaciones de proceso y, además, la linealidad obtenida cumple ampliamente los requisitos impuestos por las políticas DTM |error 3_ de 1,17oC considerando variaciones del proceso y calibrando en dos puntos. La implementación de la parte sensora de esta nueva técnica implica varias consideraciones de diseño, tales como la generación de una referencia de tensión independiente de variaciones de proceso, que se analizan en profundidad en la tesis. Para la conversión tiempo-a-digital, se emplea la misma estructura de digitalización que en el primer sensor. Para la implementación física de la parte de digitalización, se ha construido una biblioteca de células estándar completamente nueva orientada a la reducción de área y consumo. El sensor resultante de la unión de todos los bloques se caracteriza por una energía por muestra ultra baja (48-640 pJ) y un área diminuta de 0,0016 mm2, esta cifra mejora todos los trabajos previos. Para probar esta afirmación, se realiza una comparación exhaustiva con más de 40 propuestas de sensores en la literatura científica. Subiendo el nivel de abstracción al sistema, la tercera contribución se centra en el modelado de un sistema de monitorización que consiste de un conjunto de sensores distribuidos por la superficie del chip. Todos los trabajos anteriores de la literatura tienen como objetivo maximizar la precisión del sistema con el mínimo número de monitores. Como novedad, en nuestra propuesta se introducen nuevos parámetros de calidad aparte del número de sensores, también se considera el consumo de energía, la frecuencia de muestreo, los costes de interconexión y la posibilidad de elegir diferentes tipos de monitores. El modelo se introduce en un algoritmo de recocido simulado que recibe la información térmica de un sistema, sus propiedades físicas, limitaciones de área, potencia e interconexión y una colección de tipos de monitor; el algoritmo proporciona el tipo seleccionado de monitor, el número de monitores, su posición y la velocidad de muestreo _optima. Para probar la validez del algoritmo, se presentan varios casos de estudio para el procesador Alpha 21364 considerando distintas restricciones. En comparación con otros trabajos previos en la literatura, el modelo que aquí se presenta es el más completo. Finalmente, la última contribución se dirige al nivel de red, partiendo de un conjunto de monitores de temperatura de posiciones conocidas, nos concentramos en resolver el problema de la conexión de los sensores de una forma eficiente en área y consumo. Nuestra primera propuesta en este campo es la introducción de un nuevo nivel en la jerarquía de interconexión, el nivel de trillado (o threshing en inglés), entre los monitores y los buses tradicionales de periféricos. En este nuevo nivel se aplica selectividad de datos para reducir la cantidad de información que se envía al controlador central. La idea detrás de este nuevo nivel es que en este tipo de redes la mayoría de los datos es inútil, porque desde el punto de vista del controlador sólo una pequeña cantidad de datos |normalmente sólo los valores extremos| es de interés. Para cubrir el nuevo nivel, proponemos una red de monitorización mono-conexión que se basa en un esquema de señalización en el dominio de tiempo. Este esquema reduce significativamente tanto la actividad de conmutación sobre la conexión como el consumo de energía de la red. Otra ventaja de este esquema es que los datos de los monitores llegan directamente ordenados al controlador. Si este tipo de señalización se aplica a sensores que realizan conversión tiempo-a-digital, se puede obtener compartición de recursos de digitalización tanto en tiempo como en espacio, lo que supone un importante ahorro de área y consumo. Finalmente, se presentan dos prototipos de sistemas de monitorización completos que de manera significativa superan la características de trabajos anteriores en términos de área y, especialmente, consumo de energía. Abstract Temperature is a first class design concern in modern integrated circuits. The important increase in power densities associated to recent technology evolutions has lead to the apparition of thermal gradients and hot spots during run time operation. Temperature impacts several circuit parameters such as speed, cooling budgets, reliability, power consumption, etc. In order to fight against these negative effects, dynamic thermal management (DTM) techniques adapt the behavior of the chip relying on the information of a monitoring system that provides run-time thermal information of the die surface. The field of on-chip temperature monitoring has drawn the attention of the scientific community in the recent years and is the object of study of this thesis. This thesis approaches the matter of on-chip temperature monitoring from different perspectives and levels, providing solutions to some of the most important issues. The physical and circuital levels are covered with the design and characterization of two novel temperature sensors specially tailored for DTM purposes. The first sensor is based upon a mechanism that obtains a pulse with a varying width based on the variations of the leakage currents on the temperature. In a nutshell, a circuit node is charged and subsequently left floating so that it discharges away through the subthreshold currents of a transistor; the time the node takes to discharge is the width of the pulse. Since the width of the pulse displays an exponential dependence on the temperature, the conversion into a digital word is realized by means of a logarithmic counter that performs both the timeto- digital conversion and the linearization of the output. The structure resulting from this combination of elements is implemented in a 0.35_m technology and is characterized by very reduced area, 10250 nm2, and power consumption, 1.05-65.5 nW at 5 samples/s, these figures outperformed all previous works by the time it was first published and still, by the time of the publication of this thesis, they outnumber all previous implementations in the same technology node. Concerning the accuracy, the sensor exhibits good linearity, even without calibration it displays a 3_ error of 1.97oC, appropriate to deal with DTM applications. As explained, the sensor is completely compatible with standard CMOS processes, this fact, along with its tiny area and power overhead, makes it specially suitable for the integration in a DTM monitoring system with a collection of on-chip monitors distributed across the chip. The exacerbated process fluctuations carried along with recent technology nodes jeop-ardize the linearity characteristics of the first sensor. In order to overcome these problems, a new temperature inferring technique is proposed. In this case, we also rely on the thermal dependencies of leakage currents that are used to discharge a floating node, but now, the result comes from the ratio of two different measures, in one of which we alter a characteristic of the discharging transistor |the gate voltage. This ratio proves to be very robust against process variations and displays a more than suficient linearity on the temperature |1.17oC 3_ error considering process variations and performing two-point calibration. The implementation of the sensing part based on this new technique implies several issues, such as the generation of process variations independent voltage reference, that are analyzed in depth in the thesis. In order to perform the time-to-digital conversion, we employ the same digitization structure the former sensor used. A completely new standard cell library targeting low area and power overhead is built from scratch to implement the digitization part. Putting all the pieces together, we achieve a complete sensor system that is characterized by ultra low energy per conversion of 48-640pJ and area of 0.0016mm2, this figure outperforms all previous works. To prove this statement, we perform a thorough comparison with over 40 works from the scientific literature. Moving up to the system level, the third contribution is centered on the modeling of a monitoring system consisting of set of thermal sensors distributed across the chip. All previous works from the literature target maximizing the accuracy of the system with the minimum number of monitors. In contrast, we introduce new metrics of quality apart form just the number of sensors; we consider the power consumption, the sampling frequency, the possibility to consider different types of monitors and the interconnection costs. The model is introduced in a simulated annealing algorithm that receives the thermal information of a system, its physical properties, area, power and interconnection constraints and a collection of monitor types; the algorithm yields the selected type of monitor, the number of monitors, their position and the optimum sampling rate. We test the algorithm with the Alpha 21364 processor under several constraint configurations to prove its validity. When compared to other previous works in the literature, the modeling presented here is the most complete. Finally, the last contribution targets the networking level, given an allocated set of temperature monitors, we focused on solving the problem of connecting them in an efficient way from the area and power perspectives. Our first proposal in this area is the introduction of a new interconnection hierarchy level, the threshing level, in between the monitors and the traditional peripheral buses that applies data selectivity to reduce the amount of information that is sent to the central controller. The idea behind this new level is that in this kind of networks most data are useless because from the controller viewpoint just a small amount of data |normally extreme values| is of interest. To cover the new interconnection level, we propose a single-wire monitoring network based on a time-domain signaling scheme that significantly reduces both the switching activity over the wire and the power consumption of the network. This scheme codes the information in the time domain and allows a straightforward obtention of an ordered list of values from the maximum to the minimum. If the scheme is applied to monitors that employ TDC, digitization resource sharing is achieved, producing an important saving in area and power consumption. Two prototypes of complete monitoring systems are presented, they significantly overcome previous works in terms of area and, specially, power consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finding useful sharing information between instances in object- oriented programs has recently been the focus of much research. The applications of such static analysis are multiple: by knowing which variables definitely do not share in memory we can apply conventional compiler optimizations, find coarse-grained parallelism opportunities, or, more importantly, verify certain correctness aspects of programs even in the absence of annotations. In this paper we introduce a framework for deriving precise sharing information based on abstract interpretation for a Java-like language. Our analysis achieves precision in various ways, including supporting multivariance, which allows separating different contexts. We propose a combined Set Sharing + Nullity + Classes domain which captures which instances do not share and which ones are definitively null, and which uses the classes to refine the static information when inheritance is present. The use of a set sharing abstraction allows a more precise representation of the existing sharings and is crucial in achieving precision during interprocedural analysis. Carrying the domains in a combined way facilitates the interaction among them in the presence of multivariance in the analysis. We show through examples and experimentally that both the set sharing part of the domain as well as the combined domain provide more accurate information than previous work based on pair sharing domains, at reasonable cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finding useful sharing information between instances in object- oriented programs has been recently the focus of much research. The applications of such static analysis are multiple: by knowing which variables share in memory we can apply conventional compiler optimizations, find coarse-grained parallelism opportunities, or, more importantly,erify certain correctness aspects of programs even in the absence of annotations In this paper we introduce a framework for deriving precise sharing information based on abstract interpretation for a Java-like language. Our analysis achieves precision in various ways. The analysis is multivariant, which allows separating different contexts. We propose a combined Set Sharing + Nullity + Classes domain which captures which instances share and which ones do not or are definitively null, and which uses the classes to refine the static information when inheritance is present. Carrying the domains in a combined way facilitates the interaction among the domains in the presence of mutivariance in the analysis. We show that both the set sharing part of the domain as well as the combined domain provide more accurate information than previous work based on pair sharing domains, at reasonable cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erosion potential and the effects of tillage can be evaluated from quantitative descriptions of soil surface roughness. The present study therefore aimed to fill the need for a reliable, low-cost and convenient method to measure that parameter. Based on the interpretation of micro-topographic shadows, this new procedure is primarily designed for use in the field after tillage. The principle underlying shadow analysis is the direct relationship between soil surface roughness and the shadows cast by soil structures under fixed sunlight conditions. The results obtained with this method were compared to the statistical indexes used to interpret field readings recorded by a pin meter. The tests were conducted on 4-m2 sandy loam and sandy clay loam plots divided into 1-m2 subplots tilled with three different tools: chisel, tiller and roller. The highly significant correlation between the statistical indexes and shadow analysis results obtained in the laboratory as well as in the field for all the soil?tool combinations proved that both variability (CV) and dispersion (SD) are accommodated by the new method. This procedure simplifies the interpretation of soil surface roughness and shortens the time involved in field operations by a factor ranging from 12 to 20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basics of the self-assembled growth of GaN nanorods on Si(111) are reviewed. Morphology differences and optical properties are compared to those of GaN layers grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanorods grown on Si(111) is described. In addition, the inclusion of InGaN quantum disk structures into selfassembled GaN nanorods show clear confinement effects as a function of the quantum disk thickness. In order to overcome the properties dispersion and the intrinsic inhomogeneous nature of the self-assembled growth, the selective area growth of GaN nanorods on both, c-plane and a-plane GaN on sapphire templates, is addressed, with special emphasis on optical quality and morphology differences. The analysis of the optical emission from a single InGaN quantum disk is shown for both polar and non-polar nanorod orientations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E-beam lithography was used to pattern a titanium mask on a GaN substrate with ordered arrays of nanoholes. This patterned mask served as a template for the subsequent ordered growth of GaN/InGaN nanorods by plasma-assisted molecular beam epitaxy. The mask patterning process was optimized for several holes configurations. The smallest holes were 30 nm in diameter with a pitch (center-to-center distance) of 100 nm only. High quality masks of several geometries were obtained that could be used to grow ordered GaN/InGaN nanorods with full selectivity (growth localized inside the nanoholes only) over areas of hundreds of microns. Although some parasitic InGaN growth occurred between the nanorods during the In incorporation, transmission electron microscopy and photoluminescence measurements demonstrated that these ordered nanorods exhibit high crystal quality and reproducible optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let U be an open subset of a separable Banach space. Let F be the collection of all holomorphic mappings f from the open unit disc D � C into U such that f(D) is dense in U. We prove the lineability and density of F in appropriate spaces for diferent choices of U. RESUMEN. Sea U un subconjunto abierto de un espacio de Banach separable. Sea F el conjunto de funciones holomorfas f definidas en el disco unidad D del plano complejo con valores en U tales que f(D) es denso en U. En el artículo se demuestra la lineabilidad y densidad del conjunto F para diferentes elecciones de U.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moment invariants have been thoroughly studied and repeatedly proposed as one of the most powerful tools for 2D shape identification. In this paper a set of such descriptors is proposed, being the basis functions discontinuous in a finite number of points. The goal of using discontinuous functions is to avoid the Gibbs phenomenon, and therefore to yield a better approximation capability for discontinuous signals, as images. Moreover, the proposed set of moments allows the definition of rotation invariants, being this the other main design concern. Translation and scale invariance are achieved by means of standard image normalization. Tests are conducted to evaluate the behavior of these descriptors in noisy environments, where images are corrupted with Gaussian noise up to different SNR values. Results are compared to those obtained using Zernike moments, showing that the proposed descriptor has the same performance in image retrieval tasks in noisy environments, but demanding much less computational power for every stage in the query chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The set agreement problem states that from n proposed values at most n-1 can be decided. Traditionally, this problem is solved using a failure detector in asynchronous systems where processes may crash but not recover, where processes have different identities, and where all processes initially know the membership. In this paper we study the set agreement problem and the weakest failure detector L used to solve it in asynchronous message passing systems where processes may crash and recover, with homonyms (i.e., processes may have equal identities) and without a complete initial knowledge of the membership.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-resolution PET cameras. System response probabilities are calculated online from a set of parameters derived from Monte Carlo simulations. The shape of a system response for a given line of response (LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the development of efficient region-search techniques to sample the system response probabilities, which are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel models is applied in the proposed PET reconstruction algorithm. Methods: A novel region-search technique has been used to sample the probability density function in correspondence with a small dynamic subset of the field of view that constitutes the region of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dynamically calculated contour. The contour condition is currently defined as a fixed threshold over the posterior probability, and arbitrary kernel models can be applied using a numerical approach. The processing of the LORs is distributed in batches among the available computing devices, then, individual LORs are processed within different processing units. In this way, both multicore and multiple many-core processing units can be efficiently exploited. Tests have been conducted with probability models that take into account the noncolinearity, positron range, and crystal penetration effects, that produced tubes of response with varying elliptical sections whose axes were a function of the crystal's thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 3D scalar field defined within a reference system aligned with the ideal LOR. Results: This new technique provides superior image quality in terms of signal-to-noise ratio as compared with the histogram-mode method based on precomputed system matrices available for a commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, many-core architectures, including multiple graphic processing units. Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed and the image signal-to-noise of a given OSEM algorithm. The method has been validated using simulated and real phantoms. A special advantage of the new method is the possibility of defining dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control on the trade-off between speed and quality during the reconstruction.