48 resultados para De bello Gallico
Resumo:
En el curso académico 2011/12 se ha introducido como innovación educativa en la ETSI de Telecomunicación de la UPM un sistema de respuesta interactiva basado en mandos de radio frecuencia para el soporte a la participación de los alumnos en el aula. El presente documento pretende describir la experiencia de su implantación en tres asignaturas de diferente tipología. De acuerdo a los resultados obtenidos hasta el momento, los alumnos estacan la facilidad de uso del sistema y la mejora en cuanto a su participación en clase, estando interesados en su utilización en otras asignaturas. Por parte de los profesores, destaca que se dispone de información instantánea del proceso de aprendizaje individualizado del alumno, lo que permite incidir inmediatamente en aquellas cuestiones con peores resultados. Los principales inconvenientes se centran en su baja aportación a la asistencia a clase y a la retención y comprensión de conceptos.
Resumo:
It is clear that in the near future much broader transmissions in the HF band will replace part of the current narrow band links. Our personal view is that a real wide band signal is infeasible in this environment because the usage is typically very intensive and may suffer interferences from all over the world. Therefore, we envision that dynamic multiband transmissions may provide better satisfactory performance. From the very beginning, we observed that real links with our broadband transceiver suffered interferences out of our multiband but within the acquisition bandwidth that degrade the expected performance. Therefore, we concluded that a mitigation structure is required that operates on severely saturated signals as the interference may be of much higher power. In this paper we address a procedure based on Higher Order Crossings (HOC) statistics that are able to extract most of the signal structure in the case where the amplitude is severely distorted and allows the estimation of the interference carrier frequency to command a variable notch filter that mitigates its effect in the analog domain.
Resumo:
We envision that dynamic multiband transmissions taking advantage of the receiver diversity (even for collocated antennas with different polarization or radiation pattern) will create a new paradigm for these links guaranteeing high quality and reliability. However, there are many challenges to face regarding the use of broadband reception where several out of band (with respect to multiband transmission) strong interferers, but still within the acquisition band, may limit dramatically the expected performance. In this paper we address this problem introducing a specific capability of the communication system that is able to mitigate these interferences using analog beamforming principles. Indeed, Higher Order Crossing (HOCs) joint statistics of the Single Input ? Multiple Output (SIMO) system are shown to effectively determine the angle on arrival of the wavefront even operating over highly distorted signals.
Resumo:
Achieving reliable communication over HF channels is known to be challenging due to the particularly hostile propagation medium. To address this problem, diversity techniques were shown to be promising. In this paper, we demonstrate through experimental results the benefits of different diversity strategies when applied to multi-input-multi-output (MIMO) multicarrier systems. The performance gains of polarisation, space and frequency diversities are quantified using different measurement campaigns.
Resumo:
Energy efficiency is a major design issue in the context of Wireless Sensor Networks (WSN). If data is to be sent to a far-away base station, collaborative beamforming by the sensors may help to dis- tribute the load among the nodes and reduce fast battery depletion. However, collaborative beamforming techniques are far from opti- mality and in many cases may be wasting more power than required. In this contribution we consider the issue of energy efficiency in beamforming applications. Using a convex optimization framework, we propose the design of a virtual beamformer that maximizes the network's lifetime while satisfying a pre-specified Quality of Service (QoS) requirement. A distributed consensus-based algorithm for the computation of the optimal beamformer is also provided
Resumo:
We study a cognitive radio scenario in which the network of sec- ondary users wishes to identify which primary user, if any, is trans- mitting. To achieve this, the nodes will rely on some form of location information. In our previous work we proposed two fully distributed algorithms for this task, with and without a pre-detection step, using propagation parameters as the only source of location information. In a real distributed deployment, each node must estimate its own po- sition and/or propagation parameters. Hence, in this work we study the effect of uncertainty, or error in these estimates on the proposed distributed identification algorithms. We show that the pre-detection step significantly increases robustness against uncertainty in nodes' locations.
Resumo:
We address a cognitive radio scenario, where a number of secondary users performs identification of which primary user, if any, is trans- mitting, in a distributed way and using limited location information. We propose two fully distributed algorithms: the first is a direct iden- tification scheme, and in the other a distributed sub-optimal detection based on a simplified Neyman-Pearson energy detector precedes the identification scheme. Both algorithms are studied analytically in a realistic transmission scenario, and the advantage obtained by detec- tion pre-processing is also verified via simulation. Finally, we give details of their fully distributed implementation via consensus aver- aging algorithms.
Resumo:
Distributed target tracking in wireless sensor networks (WSN) is an important problem, in which agreement on the target state can be achieved using conventional consensus methods, which take long to converge. We propose distributed particle filtering based on belief propagation (DPF-BP) consensus, a fast method for target tracking. According to our simulations, DPF-BP provides better performance than DPF based on standard belief consensus (DPF-SBC) in terms of disagreement in the network. However, in terms of root-mean square error, it can outperform DPF-SBC only for a specific number of consensus iterations.
Resumo:
We introduce a diffusion-based algorithm in which multiple agents cooperate to predict a common and global statevalue function by sharing local estimates and local gradient information among neighbors. Our algorithm is a fully distributed implementation of the gradient temporal difference with linear function approximation, to make it applicable to multiagent settings. Simulations illustrate the benefit of cooperation in learning, as made possible by the proposed algorithm.
Resumo:
Cognitive Radio principles can be applied to HF communications to make a more efficient use of the extremely scarce spectrum. In this contribution we focus on analyzing the usage of the available channels done by the legacy users, which are regarded as primary users since they are allowed to transmit without resorting any smart procedure, and consider the possibilities for our stations -over the HFDVL (HF Data+Voice Link) architecture- to participate as secondary users. Our goal is to enhance an efficient use of the HF band by detecting the presence of uncoordinated primary users and avoiding collisions with them while transmitting in different HF channels using our broad-band HF transceiver. A model of the primary user activity dynamics in the HF band is developed in this work. It is based on Hidden Markov Models (HMM) which are a powerful tool for modelling stochastic random processes, and is trained with real measurements from the 14 MHz band.
Resumo:
The reliability of bidirectional communication link can be guaranteed with Automatic Repeat Request Procedures (ARQ). The standard STANAG 5066 describes the ARQ procedure for HF communications that can either be applied to existing HF physical layers modems or adapted to future physical layer designs. In this contribution the physical layer parameters of an HF modem (HFDVL), developed by the authors over the last decade, are chosen to optimize the performance of the ARQ procedure described in STANAG 5066. Besides the interleaving length, constellation size and coding type, the OFDM-based HFDVL modem permits the selection of the number of receiver antennas. It will be shown that this parameter gives additional degrees of freedom and permits reliable communication over low SNR HF communication links.
Resumo:
Multi-carrier modulations are widely employed in ionospheric communications to mitigate the adverse effects of the HF channel. In this paper we show how performance achieved by these modulations can be further increased by means of CSIbased precoding techniques in the context of our research on interactive digital voice communications. Depending on communication constraints and channel parameters, we will show which of the studied modulations and precoding techniques to select so that to maximise performance.
Resumo:
Systems used for target localization, such as goods, individuals, or animals, commonly rely on operational means to meet the final application demands. However, what would happen if some means were powered up randomly by harvesting systems? And what if those devices not randomly powered had their duty cycles restricted? Under what conditions would such an operation be tolerable in localization services? What if the references provided by nodes in a tracking problem were distorted? Moreover, there is an underlying topic common to the previous questions regarding the transfer of conceptual models to reality in field tests: what challenges are faced upon deploying a localization network that integrates energy harvesting modules? The application scenario of the system studied is a traditional herding environment of semi domesticated reindeer (Rangifer tarandus tarandus) in northern Scandinavia. In these conditions, information on approximate locations of reindeer is as important as environmental preservation. Herders also need cost-effective devices capable of operating unattended in, sometimes, extreme weather conditions. The analyses developed are worthy not only for the specific application environment presented, but also because they may serve as an approach to performance of navigation systems in absence of reasonably accurate references like the ones of the Global Positioning System (GPS). A number of energy-harvesting solutions, like thermal and radio-frequency harvesting, do not commonly provide power beyond one milliwatt. When they do, battery buffers may be needed (as it happens with solar energy) which may raise costs and make systems more dependent on environmental temperatures. In general, given our problem, a harvesting system is needed that be capable of providing energy bursts of, at least, some milliwatts. Many works on localization problems assume that devices have certain capabilities to determine unknown locations based on range-based techniques or fingerprinting which cannot be assumed in the approach considered herein. The system presented is akin to range-free techniques, but goes to the extent of considering very low node densities: most range-free techniques are, therefore, not applicable. Animal localization, in particular, uses to be supported by accurate devices such as GPS collars which deplete batteries in, maximum, a few days. Such short-life solutions are not particularly desirable in the framework considered. In tracking, the challenge may times addressed aims at attaining high precision levels from complex reliable hardware and thorough processing techniques. One of the challenges in this Thesis is the use of equipment with just part of its facilities in permanent operation, which may yield high input noise levels in the form of distorted reference points. The solution presented integrates a kinetic harvesting module in some nodes which are expected to be a majority in the network. These modules are capable of providing power bursts of some milliwatts which suffice to meet node energy demands. The usage of harvesting modules in the aforementioned conditions makes the system less dependent on environmental temperatures as no batteries are used in nodes with harvesters--it may be also an advantage in economic terms. There is a second kind of nodes. They are battery powered (without kinetic energy harvesters), and are, therefore, dependent on temperature and battery replacements. In addition, their operation is constrained by duty cycles in order to extend node lifetime and, consequently, their autonomy. There is, in turn, a third type of nodes (hotspots) which can be static or mobile. They are also battery-powered, and are used to retrieve information from the network so that it is presented to users. The system operational chain starts at the kinetic-powered nodes broadcasting their own identifier. If an identifier is received at a battery-powered node, the latter stores it for its records. Later, as the recording node meets a hotspot, its full record of detections is transferred to the hotspot. Every detection registry comprises, at least, a node identifier and the position read from its GPS module by the battery-operated node previously to detection. The characteristics of the system presented make the aforementioned operation own certain particularities which are also studied. First, identifier transmissions are random as they depend on movements at kinetic modules--reindeer movements in our application. Not every movement suffices since it must overcome a certain energy threshold. Second, identifier transmissions may not be heard unless there is a battery-powered node in the surroundings. Third, battery-powered nodes do not poll continuously their GPS module, hence localization errors rise even more. Let's recall at this point that such behavior is tight to the aforementioned power saving policies to extend node lifetime. Last, some time is elapsed between the instant an identifier random transmission is detected and the moment the user is aware of such a detection: it takes some time to find a hotspot. Tracking is posed as a problem of a single kinetically-powered target and a population of battery-operated nodes with higher densities than before in localization. Since the latter provide their approximate positions as reference locations, the study is again focused on assessing the impact of such distorted references on performance. Unlike in localization, distance-estimation capabilities based on signal parameters are assumed in this problem. Three variants of the Kalman filter family are applied in this context: the regular Kalman filter, the alpha-beta filter, and the unscented Kalman filter. The study enclosed hereafter comprises both field tests and simulations. Field tests were used mainly to assess the challenges related to power supply and operation in extreme conditions as well as to model nodes and some aspects of their operation in the application scenario. These models are the basics of the simulations developed later. The overall system performance is analyzed according to three metrics: number of detections per kinetic node, accuracy, and latency. The links between these metrics and the operational conditions are also discussed and characterized statistically. Subsequently, such statistical characterization is used to forecast performance figures given specific operational parameters. In tracking, also studied via simulations, nonlinear relationships are found between accuracy and duty cycles and cluster sizes of battery-operated nodes. The solution presented may be more complex in terms of network structure than existing solutions based on GPS collars. However, its main gain lies on taking advantage of users' error tolerance to reduce costs and become more environmentally friendly by diminishing the potential amount of batteries that can be lost. Whether it is applicable or not depends ultimately on the conditions and requirements imposed by users' needs and operational environments, which is, as it has been explained, one of the topics of this Thesis.
Resumo:
We characterize the region of meromorphic continuation of an analytic function ff in terms of the geometric rate of convergence on a compact set of sequences of multi-point rational interpolants of ff. The rational approximants have a bounded number of poles and the distribution of interpolation points is arbitrary.
Resumo:
A real-time large scale part-to-part video matching algorithm, based on the cross correlation of the intensity of motion curves, is proposed with a view to originality recognition, video database cleansing, copyright enforcement, video tagging or video result re-ranking. Moreover, it is suggested how the most representative hashes and distance functions - strada, discrete cosine transformation, Marr-Hildreth and radial - should be integrated in order for the matching algorithm to be invariant against blur, compression and rotation distortions: (R; _) 2 [1; 20]_[1; 8], from 512_512 to 32_32pixels2 and from 10 to 180_. The DCT hash is invariant against blur and compression up to 64x64 pixels2. Nevertheless, although its performance against rotation is the best, with a success up to 70%, it should be combined with the Marr-Hildreth distance function. With the latter, the image selected by the DCT hash should be at a distance lower than 1.15 times the Marr-Hildreth minimum distance.