21 resultados para DFB lasers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct optical modulation at 2.5 Gb/s with amplitude of more than 0.5 W has been demonstrated in single longitudinal mode distributed Bragg reflector tapered lasers emitting at 1060 nm with separated injection of the ridge waveguide and tapered sections. The modulating signal of ~110 mA peak to peak was applied to the ridge waveguide section, yielding a high modulation efficiency of ~5 W/A. The large-signal frequency response of the experimental set-up was limited by the bandwidth of the electrical amplifier rather than by the internal dynamics of the laser, indicating that higher bit rates could be achieved with improved driving electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the gain-switching dynamics of two-section tapered lasers by means of a simplified three-rate-equation model. The goal is to improve the understanding of the underlying physics and to optimize the device geometry to achieve high power short duration optical pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, educational software for intuitive understanding of the basic dynamic processes of semiconductor lasers is presented. The proposed tool is addressed to the students of optical communication courses, encouraging self consolidation of the subjects learned in lectures. The semiconductor laser model is based on the well known rate equations for the carrier density, photon density and optical phase. The direct modulation of the laser is considered with input parameters which can be selected by the user. Different options for the waveform, amplitude and frequency of thpoint. Simulation results are plotted for carrier density and output power versus time. Instantaneous frequency variations of the laser output are numerically shifted to the audible frequency range and sent to the computer loudspeakers. This results in an intuitive description of the “chirp” phenomenon due to amplitude-phase coupling, typical of directly modulated semiconductor lasers. In this way, the student can actually listen to the time resolved spectral content of the laser output. By changing the laser parameters and/or the modulation parameters,consequent variation of the laser output can be appreciated in intuitive manner. The proposed educational tool has been previously implemented by the same authors with locally executable software. In the present manuscript, we extend our previous work to a web based platform, offering improved distribution and allowing its use to the wide audience of the web.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing demands in MEMS fabrication are leading to new requirements in production technology. Especially the packaging and assembly require high accuracy in positioning and high reproducibility in combination with low production costs. Conventional assembly technology and mechanical adjustment methods are time consuming and expensive. Each component of the system has to be positioned and fixed. Also adjustment of the parts after joining requires additional mechanical devices that need to be accessible after joining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose the use of a polarization based interferometer with variable transfer function for the generation of temporally flat top pulses from gain switched single mode semiconductor lasers. The main advantage of the presented technique is its flexibility in terms of input pulse characteristics, as pulse duration, spectral bandwidth and operating wavelength. Theoretical predictions and experimental demonstrations are presented and the proposed technique is applied to two different semiconductor laser sources emitting in the 1550 nm region. Flat top pulses are successfully obtained with input seed pulses with duration ranging from 40 ps to 100 ps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High brightness semiconductor lasers are potential transmitters for future space lidar systems. In the framework of the European Project BRITESPACE, we propose an all-semiconductor laser source for an Integrated Path Differential Absorption lidar system for column-averaged measurements of atmospheric CO2 in future satellite missions. The complete system architecture has to be adapted to the particular emission properties of these devices using a Random Modulated Continuous Wave approach. We present the initial experimental results of the InGaAsP/InP monolithic Master Oscillator Power Amplifiers, providing the ON and OFF wavelengths close to the selected absorption line around 1572 nm.