43 resultados para DARK ENERGY MODELS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Análisis de sensibilidad de modelos de turbulencia para un modelo CFD de viento aplicados a un emplazamiento en terreno complejo. Validación con datos de viento y turbulencia registrados a 3 alturas en 3 torres de medida.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessing wind conditions on complex terrain has become a hard task as terrain complexity increases. That is why there is a need to extrapolate in a reliable manner some wind parameters that determine wind farms viability such as annual average wind speed at all hub heights as well as turbulence intensities. The development of these tasks began in the early 90´s with the widely used linear model WAsP and WAsP Engineering especially designed for simple terrain with remarkable results on them but not so good on complex orographies. Simultaneously non-linearized Navier Stokes solvers have been rapidly developed in the last decade through CFD (Computational Fluid Dynamics) codes allowing simulating atmospheric boundary layer flows over steep complex terrain more accurately reducing uncertainties. This paper describes the features of these models by validating them through meteorological masts installed in a highly complex terrain. The study compares the results of the mentioned models in terms of wind speed and turbulence intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind farms have been extensively simulated through engineering models for the estimation of wind speed and power deficits inside wind farms. These models were designed initially for a few wind turbines located in flat terrain. Other models based on the parabolic approximation of Navier Stokes equations were developed, making more realistic and feasible the operational resolution of big wind farms in flat terrain and offshore sites. These models have demonstrated to be accurate enough when solving wake effects for this type of environments. Nevertheless, few analyses exist on how complex terrain can affect the behaviour of wind farm wake flow. Recent numerical studies have demonstrated that topographical wakes induce a significant effect on wind turbines wakes, compared to that on flat terrain. This circumstance has recommended the development of elliptic CFD models which allow global simulation of wind turbine wakes in complex terrain. An accurate simplification for the analysis of wind turbine wakes is the actuator disk technique. Coupling this technique with CFD wind models enables the estimation of wind farm wakes preserving the extraction of axial momentum present inside wind farms. This paper describes the analysis and validation of the elliptical wake model CFDWake 1.0 against experimental data from an operating wind farm located in complex terrain. The analysis also reports whether it is possible or not to superimpose linearly the effect of terrain and wind turbine wakes. It also represents one of the first attempts to observe the performance of engineering models compares in large complex terrain wind farms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simplified CFD wake model based on the actuator disk concept is used to simulate the wind turbine, represented by a disk upon which a distribution of forces, defined as axial momentum sources, are applied on the incoming non-uniform flow. The rotor is supposed to be uniformly loaded, with the exerted forces function of the incident wind speed, the thrust coefficient and the rotor diameter. The model is tested under different parameterizations of turbulence models and validated through experimental measurements downwind of a wind turbine in terms of wind speed deficit and turbulence intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems used for target localization, such as goods, individuals, or animals, commonly rely on operational means to meet the final application demands. However, what would happen if some means were powered up randomly by harvesting systems? And what if those devices not randomly powered had their duty cycles restricted? Under what conditions would such an operation be tolerable in localization services? What if the references provided by nodes in a tracking problem were distorted? Moreover, there is an underlying topic common to the previous questions regarding the transfer of conceptual models to reality in field tests: what challenges are faced upon deploying a localization network that integrates energy harvesting modules? The application scenario of the system studied is a traditional herding environment of semi domesticated reindeer (Rangifer tarandus tarandus) in northern Scandinavia. In these conditions, information on approximate locations of reindeer is as important as environmental preservation. Herders also need cost-effective devices capable of operating unattended in, sometimes, extreme weather conditions. The analyses developed are worthy not only for the specific application environment presented, but also because they may serve as an approach to performance of navigation systems in absence of reasonably accurate references like the ones of the Global Positioning System (GPS). A number of energy-harvesting solutions, like thermal and radio-frequency harvesting, do not commonly provide power beyond one milliwatt. When they do, battery buffers may be needed (as it happens with solar energy) which may raise costs and make systems more dependent on environmental temperatures. In general, given our problem, a harvesting system is needed that be capable of providing energy bursts of, at least, some milliwatts. Many works on localization problems assume that devices have certain capabilities to determine unknown locations based on range-based techniques or fingerprinting which cannot be assumed in the approach considered herein. The system presented is akin to range-free techniques, but goes to the extent of considering very low node densities: most range-free techniques are, therefore, not applicable. Animal localization, in particular, uses to be supported by accurate devices such as GPS collars which deplete batteries in, maximum, a few days. Such short-life solutions are not particularly desirable in the framework considered. In tracking, the challenge may times addressed aims at attaining high precision levels from complex reliable hardware and thorough processing techniques. One of the challenges in this Thesis is the use of equipment with just part of its facilities in permanent operation, which may yield high input noise levels in the form of distorted reference points. The solution presented integrates a kinetic harvesting module in some nodes which are expected to be a majority in the network. These modules are capable of providing power bursts of some milliwatts which suffice to meet node energy demands. The usage of harvesting modules in the aforementioned conditions makes the system less dependent on environmental temperatures as no batteries are used in nodes with harvesters--it may be also an advantage in economic terms. There is a second kind of nodes. They are battery powered (without kinetic energy harvesters), and are, therefore, dependent on temperature and battery replacements. In addition, their operation is constrained by duty cycles in order to extend node lifetime and, consequently, their autonomy. There is, in turn, a third type of nodes (hotspots) which can be static or mobile. They are also battery-powered, and are used to retrieve information from the network so that it is presented to users. The system operational chain starts at the kinetic-powered nodes broadcasting their own identifier. If an identifier is received at a battery-powered node, the latter stores it for its records. Later, as the recording node meets a hotspot, its full record of detections is transferred to the hotspot. Every detection registry comprises, at least, a node identifier and the position read from its GPS module by the battery-operated node previously to detection. The characteristics of the system presented make the aforementioned operation own certain particularities which are also studied. First, identifier transmissions are random as they depend on movements at kinetic modules--reindeer movements in our application. Not every movement suffices since it must overcome a certain energy threshold. Second, identifier transmissions may not be heard unless there is a battery-powered node in the surroundings. Third, battery-powered nodes do not poll continuously their GPS module, hence localization errors rise even more. Let's recall at this point that such behavior is tight to the aforementioned power saving policies to extend node lifetime. Last, some time is elapsed between the instant an identifier random transmission is detected and the moment the user is aware of such a detection: it takes some time to find a hotspot. Tracking is posed as a problem of a single kinetically-powered target and a population of battery-operated nodes with higher densities than before in localization. Since the latter provide their approximate positions as reference locations, the study is again focused on assessing the impact of such distorted references on performance. Unlike in localization, distance-estimation capabilities based on signal parameters are assumed in this problem. Three variants of the Kalman filter family are applied in this context: the regular Kalman filter, the alpha-beta filter, and the unscented Kalman filter. The study enclosed hereafter comprises both field tests and simulations. Field tests were used mainly to assess the challenges related to power supply and operation in extreme conditions as well as to model nodes and some aspects of their operation in the application scenario. These models are the basics of the simulations developed later. The overall system performance is analyzed according to three metrics: number of detections per kinetic node, accuracy, and latency. The links between these metrics and the operational conditions are also discussed and characterized statistically. Subsequently, such statistical characterization is used to forecast performance figures given specific operational parameters. In tracking, also studied via simulations, nonlinear relationships are found between accuracy and duty cycles and cluster sizes of battery-operated nodes. The solution presented may be more complex in terms of network structure than existing solutions based on GPS collars. However, its main gain lies on taking advantage of users' error tolerance to reduce costs and become more environmentally friendly by diminishing the potential amount of batteries that can be lost. Whether it is applicable or not depends ultimately on the conditions and requirements imposed by users' needs and operational environments, which is, as it has been explained, one of the topics of this Thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work focuses on the analysis of a structural element of MetOP-A satellite. Given the special interest in the influence of equipment installed on structural elements, the paper studies one of the lateral faces on which the Advanced SCATterometer (ASCAT) is installed. The work is oriented towards the modal characterization of the specimen, describing the experimental set-up and the application of results to the development of a Finite Element Method (FEM) model to study the vibro-acoustic response. For the high frequency range, characterized by a high modal density, a Statistical Energy Analysis (SEA) model is considered, and the FEM model is used when modal density is low. The methodology for developing the SEA model and a compound FEM and Boundary Element Method (BEM) model to provide continuity in the medium frequency range is presented, as well as the necessary updating, characterization and coupling between models required to achieve numerical models that match experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many efforts have been made in order to adequate the production of a solar thermal collector field to the consumption of domestic hot water of the inhabitants of a building. In that sense, much has been achieved in different domains: research agencies, government policies and manufacturers. However, most of the design rules of the solar plants are based on steady state models, whereas solar irradiance, consumption and thermal accumulation are inherently transient processes. As a result of this lack of physical accuracy, thermal storage tanks are sometimes left to be as large as the designer decides without any aforementioned precise recommendation. This can be a problem if solar thermal systems are meant to be implemented in nowadays buildings, where there is a shortage of space. In addition to that, an excessive storage volume could not result more efficient in many residential applications, but costly, extreme in space consumption and in some cases too heavy. A proprietary transient simulation program has been developed and validated with a detailed measurement campaign in an experimental facility. In situ environmental data have been obtained through a whole year of operation. They have been gathered at intervals of 10 min for a solar plant of 50 m2 with a storage tank of 3 m3, including the equipment for domestic hot water production of a typical apartment building. This program has been used to obtain the design and dimensioning criteria of DHW solar plants under daily transient conditions throughout a year and more specifically the size of the storage tank for a multi storey apartment building. Comparison of the simulation results with the current Spanish regulation applicable, “Código Técnico de la Edificación” (CTE 2006), offers fruitful details and establishes solar facilities dimensioning criteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decision to select the most suitable type of energy storage system for an electric vehicle is always difficult, since many conditionings must be taken into account. Sometimes, this study can be made by means of complex mathematical models which represent the behavior of a battery, ultracapacitor or some other devices. However, these models are usually too dependent on parameters that are not easily available, which usually results in nonrealistic results. Besides, the more accurate the model, the more specific it needs to be, which becomes an issue when comparing systems of different nature. This paper proposes a practical methodology to compare different energy storage technologies. This is done by means of a linear approach of an equivalent circuit based on laboratory tests. Via these tests, the internal resistance and the self-discharge rate are evaluated, making it possible to compare different energy storage systems regardless their technology. Rather simple testing equipment is sufficient to give a comparative idea of the differences between each system, concerning issues such as efficiency, heating and self-discharge, when operating under a certain scenario. The proposed methodology is applied to four energy storage systems of different nature for the sake of illustration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calibration coefficients of several models of cup and propeller anemometers were analysed. The analysis was based on a series of laboratory calibrations between January 2003 and August 2007. Mean and standard deviation values of calibration coefficients from the anemometers studied were included. Two calibration procedures were used and compared. In the first, recommended by the Measuring network of Wind Energy Institutes (MEASNET), 13 measurement points were taken over a wind speed range of 4 to 16  m  s−1. In the second procedure, 9 measurement points were taken over a wider speed range of 4 to 23  m  s−1. Results indicated no significant differences between the two calibration procedures applied to the same anemometer in terms of measured wind speed and wind turbines' Annual Energy Production (AEP). The influence of the cup anemometers' design on the calibration coefficients was also analysed. The results revealed that the slope of the calibration curve, if based on the rotation frequency and not the anemometer's output frequency, seemed to depend on the cup center rotation radius.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maximizing energy autonomy is a consistent challenge when deploying mobile robots in ionizing radiation or other hazardous environments. Having a reliable robot system is essential for successful execution of missions and to avoid manual recovery of the robots in environments that are harmful to human beings. For deployment of robots missions at short notice, the ability to know beforehand the energy required for performing the task is essential. This paper presents a on-line method for predicting energy requirements based on the pre-determined power models for a mobile robot. A small mobile robot, Khepera III is used for the experimental study and the results are promising with high prediction accuracy. The applications of the energy prediction models in energy optimization and simulations are also discussed along with examples of significant energy savings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La astronomía de rayos γ estudia las partículas más energéticas que llegan a la Tierra desde el espacio. Estos rayos γ no se generan mediante procesos térmicos en simples estrellas, sino mediante mecanismos de aceleración de partículas en objetos celestes como núcleos de galaxias activos, púlsares, supernovas, o posibles procesos de aniquilación de materia oscura. Los rayos γ procedentes de estos objetos y sus características proporcionan una valiosa información con la que los científicos tratan de comprender los procesos físicos que ocurren en ellos y desarrollar modelos teóricos que describan su funcionamiento con fidelidad. El problema de observar rayos γ es que son absorbidos por las capas altas de la atmósfera y no llegan a la superficie (de lo contrario, la Tierra será inhabitable). De este modo, sólo hay dos formas de observar rayos γ embarcar detectores en satélites, u observar los efectos secundarios que los rayos γ producen en la atmósfera. Cuando un rayo γ llega a la atmósfera, interacciona con las partículas del aire y genera un par electrón - positrón, con mucha energía. Estas partículas secundarias generan a su vez más partículas secundarias cada vez menos energéticas. Estas partículas, mientras aún tienen energía suficiente para viajar más rápido que la velocidad de la luz en el aire, producen una radiación luminosa azulada conocida como radiación Cherenkov durante unos pocos nanosegundos. Desde la superficie de la Tierra, algunos telescopios especiales, conocidos como telescopios Cherenkov o IACTs (Imaging Atmospheric Cherenkov Telescopes), son capaces de detectar la radiación Cherenkov e incluso de tomar imágenes de la forma de la cascada Cherenkov. A partir de estas imágenes es posible conocer las principales características del rayo γ original, y con suficientes rayos se pueden deducir características importantes del objeto que los emitió, a cientos de años luz de distancia. Sin embargo, detectar cascadas Cherenkov procedentes de rayos γ no es nada fácil. Las cascadas generadas por fotones γ de bajas energías emiten pocos fotones, y durante pocos nanosegundos, y las correspondientes a rayos γ de alta energía, si bien producen más electrones y duran más, son más improbables conforme mayor es su energía. Esto produce dos líneas de desarrollo de telescopios Cherenkov: Para observar cascadas de bajas energías son necesarios grandes reflectores que recuperen muchos fotones de los pocos que tienen estas cascadas. Por el contrario, las cascadas de altas energías se pueden detectar con telescopios pequeños, pero conviene cubrir con ellos una superficie grande en el suelo para aumentar el número de eventos detectados. Con el objetivo de mejorar la sensibilidad de los telescopios Cherenkov actuales, en el rango de energía alto (> 10 TeV), medio (100 GeV - 10 TeV) y bajo (10 GeV - 100 GeV), nació el proyecto CTA (Cherenkov Telescope Array). Este proyecto en el que participan más de 27 países, pretende construir un observatorio en cada hemisferio, cada uno de los cuales contará con 4 telescopios grandes (LSTs), unos 30 medianos (MSTs) y hasta 70 pequeños (SSTs). Con un array así, se conseguirán dos objetivos. En primer lugar, al aumentar drásticamente el área de colección respecto a los IACTs actuales, se detectarán más rayos γ en todos los rangos de energía. En segundo lugar, cuando una misma cascada Cherenkov es observada por varios telescopios a la vez, es posible analizarla con mucha más precisión gracias a las técnicas estereoscópicas. La presente tesis recoge varios desarrollos técnicos realizados como aportación a los telescopios medianos y grandes de CTA, concretamente al sistema de trigger. Al ser las cascadas Cherenkov tan breves, los sistemas que digitalizan y leen los datos de cada píxel tienen que funcionar a frecuencias muy altas (≈1 GHz), lo que hace inviable que funcionen de forma continua, ya que la cantidad de datos guardada será inmanejable. En su lugar, las señales analógicas se muestrean, guardando las muestras analógicas en un buffer circular de unos pocos µs. Mientras las señales se mantienen en el buffer, el sistema de trigger hace un análisis rápido de las señales recibidas, y decide si la imagen que hay en el buér corresponde a una cascada Cherenkov y merece ser guardada, o por el contrario puede ignorarse permitiendo que el buffer se sobreescriba. La decisión de si la imagen merece ser guardada o no, se basa en que las cascadas Cherenkov producen detecciones de fotones en píxeles cercanos y en tiempos muy próximos, a diferencia de los fotones de NSB (night sky background), que llegan aleatoriamente. Para detectar cascadas grandes es suficiente con comprobar que más de un cierto número de píxeles en una región hayan detectado más de un cierto número de fotones en una ventana de tiempo de algunos nanosegundos. Sin embargo, para detectar cascadas pequeñas es más conveniente tener en cuenta cuántos fotones han sido detectados en cada píxel (técnica conocida como sumtrigger). El sistema de trigger desarrollado en esta tesis pretende optimizar la sensibilidad a bajas energías, por lo que suma analógicamente las señales recibidas en cada píxel en una región de trigger y compara el resultado con un umbral directamente expresable en fotones detectados (fotoelectrones). El sistema diseñado permite utilizar regiones de trigger de tamaño seleccionable entre 14, 21 o 28 píxeles (2, 3, o 4 clusters de 7 píxeles cada uno), y con un alto grado de solapamiento entre ellas. De este modo, cualquier exceso de luz en una región compacta de 14, 21 o 28 píxeles es detectado y genera un pulso de trigger. En la versión más básica del sistema de trigger, este pulso se distribuye por toda la cámara de forma que todos los clusters sean leídos al mismo tiempo, independientemente de su posición en la cámara, a través de un delicado sistema de distribución. De este modo, el sistema de trigger guarda una imagen completa de la cámara cada vez que se supera el número de fotones establecido como umbral en una región de trigger. Sin embargo, esta forma de operar tiene dos inconvenientes principales. En primer lugar, la cascada casi siempre ocupa sólo una pequeña zona de la cámara, por lo que se guardan muchos píxeles sin información alguna. Cuando se tienen muchos telescopios como será el caso de CTA, la cantidad de información inútil almacenada por este motivo puede ser muy considerable. Por otro lado, cada trigger supone guardar unos pocos nanosegundos alrededor del instante de disparo. Sin embargo, en el caso de cascadas grandes la duración de las mismas puede ser bastante mayor, perdiéndose parte de la información debido al truncamiento temporal. Para resolver ambos problemas se ha propuesto un esquema de trigger y lectura basado en dos umbrales. El umbral alto decide si hay un evento en la cámara y, en caso positivo, sólo las regiones de trigger que superan el nivel bajo son leídas, durante un tiempo más largo. De este modo se evita guardar información de píxeles vacíos y las imágenes fijas de las cascadas se pueden convertir en pequeños \vídeos" que representen el desarrollo temporal de la cascada. Este nuevo esquema recibe el nombre de COLIBRI (Concept for an Optimized Local Image Building and Readout Infrastructure), y se ha descrito detalladamente en el capítulo 5. Un problema importante que afecta a los esquemas de sumtrigger como el que se presenta en esta tesis es que para sumar adecuadamente las señales provenientes de cada píxel, estas deben tardar lo mismo en llegar al sumador. Los fotomultiplicadores utilizados en cada píxel introducen diferentes retardos que deben compensarse para realizar las sumas adecuadamente. El efecto de estos retardos ha sido estudiado, y se ha desarrollado un sistema para compensarlos. Por último, el siguiente nivel de los sistemas de trigger para distinguir efectivamente las cascadas Cherenkov del NSB consiste en buscar triggers simultáneos (o en tiempos muy próximos) en telescopios vecinos. Con esta función, junto con otras de interfaz entre sistemas, se ha desarrollado un sistema denominado Trigger Interface Board (TIB). Este sistema consta de un módulo que irá montado en la cámara de cada LST o MST, y que estará conectado mediante fibras ópticas a los telescopios vecinos. Cuando un telescopio tiene un trigger local, este se envía a todos los vecinos conectados y viceversa, de modo que cada telescopio sabe si sus vecinos han dado trigger. Una vez compensadas las diferencias de retardo debidas a la propagación en las fibras ópticas y de los propios fotones Cherenkov en el aire dependiendo de la dirección de apuntamiento, se buscan coincidencias, y en el caso de que la condición de trigger se cumpla, se lee la cámara en cuestión, de forma sincronizada con el trigger local. Aunque todo el sistema de trigger es fruto de la colaboración entre varios grupos, fundamentalmente IFAE, CIEMAT, ICC-UB y UCM en España, con la ayuda de grupos franceses y japoneses, el núcleo de esta tesis son el Level 1 y la Trigger Interface Board, que son los dos sistemas en los que que el autor ha sido el ingeniero principal. Por este motivo, en la presente tesis se ha incluido abundante información técnica relativa a estos sistemas. Existen actualmente importantes líneas de desarrollo futuras relativas tanto al trigger de la cámara (implementación en ASICs), como al trigger entre telescopios (trigger topológico), que darán lugar a interesantes mejoras sobre los diseños actuales durante los próximos años, y que con suerte serán de provecho para toda la comunidad científica participante en CTA. ABSTRACT -ray astronomy studies the most energetic particles arriving to the Earth from outer space. This -rays are not generated by thermal processes in mere stars, but by means of particle acceleration mechanisms in astronomical objects such as active galactic nuclei, pulsars, supernovas or as a result of dark matter annihilation processes. The γ rays coming from these objects and their characteristics provide with valuable information to the scientist which try to understand the underlying physical fundamentals of these objects, as well as to develop theoretical models able to describe them accurately. The problem when observing rays is that they are absorbed in the highest layers of the atmosphere, so they don't reach the Earth surface (otherwise the planet would be uninhabitable). Therefore, there are only two possible ways to observe γ rays: by using detectors on-board of satellites, or by observing their secondary effects in the atmosphere. When a γ ray reaches the atmosphere, it interacts with the particles in the air generating a highly energetic electron-positron pair. These secondary particles generate in turn more particles, with less energy each time. While these particles are still energetic enough to travel faster than the speed of light in the air, they produce a bluish radiation known as Cherenkov light during a few nanoseconds. From the Earth surface, some special telescopes known as Cherenkov telescopes or IACTs (Imaging Atmospheric Cherenkov Telescopes), are able to detect the Cherenkov light and even to take images of the Cherenkov showers. From these images it is possible to know the main parameters of the original -ray, and with some -rays it is possible to deduce important characteristics of the emitting object, hundreds of light-years away. However, detecting Cherenkov showers generated by γ rays is not a simple task. The showers generated by low energy -rays contain few photons and last few nanoseconds, while the ones corresponding to high energy -rays, having more photons and lasting more time, are much more unlikely. This results in two clearly differentiated development lines for IACTs: In order to detect low energy showers, big reflectors are required to collect as much photons as possible from the few ones that these showers have. On the contrary, small telescopes are able to detect high energy showers, but a large area in the ground should be covered to increase the number of detected events. With the aim to improve the sensitivity of current Cherenkov showers in the high (> 10 TeV), medium (100 GeV - 10 TeV) and low (10 GeV - 100 GeV) energy ranges, the CTA (Cherenkov Telescope Array) project was created. This project, with more than 27 participating countries, intends to build an observatory in each hemisphere, each one equipped with 4 large size telescopes (LSTs), around 30 middle size telescopes (MSTs) and up to 70 small size telescopes (SSTs). With such an array, two targets would be achieved. First, the drastic increment in the collection area with respect to current IACTs will lead to detect more -rays in all the energy ranges. Secondly, when a Cherenkov shower is observed by several telescopes at the same time, it is possible to analyze it much more accurately thanks to the stereoscopic techniques. The present thesis gathers several technical developments for the trigger system of the medium and large size telescopes of CTA. As the Cherenkov showers are so short, the digitization and readout systems corresponding to each pixel must work at very high frequencies (_ 1 GHz). This makes unfeasible to read data continuously, because the amount of data would be unmanageable. Instead, the analog signals are sampled, storing the analog samples in a temporal ring buffer able to store up to a few _s. While the signals remain in the buffer, the trigger system performs a fast analysis of the signals and decides if the image in the buffer corresponds to a Cherenkov shower and deserves to be stored, or on the contrary it can be ignored allowing the buffer to be overwritten. The decision of saving the image or not, is based on the fact that Cherenkov showers produce photon detections in close pixels during near times, in contrast to the random arrival of the NSB phtotons. Checking if more than a certain number of pixels in a trigger region have detected more than a certain number of photons during a certain time window is enough to detect large showers. However, taking also into account how many photons have been detected in each pixel (sumtrigger technique) is more convenient to optimize the sensitivity to low energy showers. The developed trigger system presented in this thesis intends to optimize the sensitivity to low energy showers, so it performs the analog addition of the signals received in each pixel in the trigger region and compares the sum with a threshold which can be directly expressed as a number of detected photons (photoelectrons). The trigger system allows to select trigger regions of 14, 21, or 28 pixels (2, 3 or 4 clusters with 7 pixels each), and with extensive overlapping. In this way, every light increment inside a compact region of 14, 21 or 28 pixels is detected, and a trigger pulse is generated. In the most basic version of the trigger system, this pulse is just distributed throughout the camera in such a way that all the clusters are read at the same time, independently from their position in the camera, by means of a complex distribution system. Thus, the readout saves a complete camera image whenever the number of photoelectrons set as threshold is exceeded in a trigger region. However, this way of operating has two important drawbacks. First, the shower usually covers only a little part of the camera, so many pixels without relevant information are stored. When there are many telescopes as will be the case of CTA, the amount of useless stored information can be very high. On the other hand, with every trigger only some nanoseconds of information around the trigger time are stored. In the case of large showers, the duration of the shower can be quite larger, loosing information due to the temporal cut. With the aim to solve both limitations, a trigger and readout scheme based on two thresholds has been proposed. The high threshold decides if there is a relevant event in the camera, and in the positive case, only the trigger regions exceeding the low threshold are read, during a longer time. In this way, the information from empty pixels is not stored and the fixed images of the showers become to little \`videos" containing the temporal development of the shower. This new scheme is named COLIBRI (Concept for an Optimized Local Image Building and Readout Infrastructure), and it has been described in depth in chapter 5. An important problem affecting sumtrigger schemes like the one presented in this thesis is that in order to add the signals from each pixel properly, they must arrive at the same time. The photomultipliers used in each pixel introduce different delays which must be compensated to perform the additions properly. The effect of these delays has been analyzed, and a delay compensation system has been developed. The next trigger level consists of looking for simultaneous (or very near in time) triggers in neighbour telescopes. These function, together with others relating to interfacing different systems, have been developed in a system named Trigger Interface Board (TIB). This system is comprised of one module which will be placed inside the LSTs and MSTs cameras, and which will be connected to the neighbour telescopes through optical fibers. When a telescope receives a local trigger, it is resent to all the connected neighbours and vice-versa, so every telescope knows if its neighbours have been triggered. Once compensated the delay differences due to propagation in the optical fibers and in the air depending on the pointing direction, the TIB looks for coincidences, and in the case that the trigger condition is accomplished, the camera is read a fixed time after the local trigger arrived. Despite all the trigger system is the result of the cooperation of several groups, specially IFAE, Ciemat, ICC-UB and UCM in Spain, with some help from french and japanese groups, the Level 1 and the Trigger Interface Board constitute the core of this thesis, as they have been the two systems designed by the author of the thesis. For this reason, a large amount of technical information about these systems has been included. There are important future development lines regarding both the camera trigger (implementation in ASICS) and the stereo trigger (topological trigger), which will produce interesting improvements for the current designs during the following years, being useful for all the scientific community participating in CTA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes an automatic methodology for modeling complex systems. Our methodology is based on the combination of Grammatical Evolution and classical regression to obtain an optimal set of features that take part of a linear and convex model. This technique provides both Feature Engineering and Symbolic Regression in order to infer accurate models with no effort or designer's expertise requirements. As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. These facilities consume from 10 to 100 times more power per square foot than typical office buildings. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. For this case study, our methodology minimizes error in power prediction. This work has been tested using real Cloud applications resulting on an average error in power estimation of 3.98%. Our work improves the possibilities of deriving Cloud energy efficient policies in Cloud data centers being applicable to other computing environments with similar characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power model, but also incorporates other non traditional factors like the static power consumption and its dependence with temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simul- taneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive efficient energy saving techniques for Cloud facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational and cooling power demands of enterprise servers are increasing at an unsustainable rate. Understanding the relationship between computational power, temperature, leakage, and cooling power is crucial to enable energy-efficient operation at the server and data center levels. This paper develops empirical models to estimate the contributions of static and dynamic power consumption in enterprise servers for a wide range of workloads, and analyzes the interactions between temperature, leakage, and cooling power for various workload allocation policies. We propose a cooling management policy that minimizes the server energy consumption by setting the optimum fan speed during runtime. Our experimental results on a presently shipping enterprise server demonstrate that including leakage awareness in workload and cooling management provides additional energy savings without any impact on performance.