21 resultados para Curves, Plane.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plano Horizontal Plano. Del plano horizontal como límite entre lo estereotómico y lo tectónico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Flat Horizontal Plane, the platform, is more than just one of the most basic mechanisms of Architecture. In this essay, I would like to move towards understanding this Flat Horizontal Plane not only as the primary mechanism of Architecture, but also, when it is erected, as the spatial limit between the stereotomic and the tectonic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to compare a number of state-of-the-art methods in airborne laser scan- ning (ALS) remote sensing with regards to their capacity to describe tree size inequality and other indi- cators related to forest structure. The indicators chosen were based on the analysis of the Lorenz curve: Gini coefficient ( GC ), Lorenz asymmetry ( LA ), the proportions of basal area ( BALM ) and stem density ( NSLM ) stocked above the mean quadratic diameter. Each method belonged to one of these estimation strategies: (A) estimating indicators directly; (B) estimating the whole Lorenz curve; or (C) estimating a complete tree list. Across these strategies, the most popular statistical methods for area-based approach (ABA) were used: regression, random forest (RF), and nearest neighbour imputation. The latter included distance metrics based on either RF (NN–RF) or most similar neighbour (MSN). In the case of tree list esti- mation, methods based on individual tree detection (ITD) and semi-ITD, both combined with MSN impu- tation, were also studied. The most accurate method was direct estimation by best subset regression, which obtained the lowest cross-validated coefficients of variation of their root mean squared error CV(RMSE) for most indicators: GC (16.80%), LA (8.76%), BALM (8.80%) and NSLM (14.60%). Similar figures [CV(RMSE) 16.09%, 10.49%, 10.93% and 14.07%, respectively] were obtained by MSN imputation of tree lists by ABA, a method that also showed a number of additional advantages, such as better distributing the residual variance along the predictive range. In light of our results, ITD approaches may be clearly inferior to ABA with regards to describing the structural properties related to tree size inequality in for- ested areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When applying computational mathematics in practical applications, even though one may be dealing with a problem that can be solved algorithmically, and even though one has good algorithms to approach the solution, it can happen, and often it is the case, that the problem has to be reformulated and analyzed from a different computational point of view. This is the case of the development of approximate algorithms. This paper frames in the research area of approximate algebraic geometry and commutative algebra and, more precisely, on the problem of the approximate parametrization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta memoria estudiamos problemas geométricos relacionados con la Localización de Servicios. La Localización de Servicios trata de la ubicación de uno o más recursos (radares, almacenes, pozos exploradores de petróleo, etc) de manera tal que se optimicen ciertos objetivos (servir al mayor número de usuarios posibles, minimizar el coste de transporte, evitar la contaminación de poblaciones cercanas, etc). La resolución de este tipo de problemas de la vida real da lugar a problemas geométricos muy interesantes. En el planteamiento geométrico de muchos de estos problemas los usuarios potenciales del servicio son representados por puntos mientras que los servicios están representados por la figura geométrica que mejor se adapta al servicio prestado: un anillo para el caso de radares, antenas de radio y televisión, aspersores, etc, una cuña si el servicio que se quiere prestar es de iluminación, por ejemplo, etc. Estas son precisamente las figuras geométricas con las que hemos trabajado. En nuestro caso el servicio será sólo uno y el planteamiento formal del problema es como sigue: dado un anillo o una cuña de tamaño fijo y un conjunto de n puntos en el plano, hallar cuál tiene que ser la posición del mismo para que se cubra la mayor cantidad de puntos. Para resolver estos problemas hemos utilizado arreglos de curvas en el plano. Los arreglos son una estructura geométrica bien conocida y estudiada dentro de la Geometría Computacional. Nosotros nos hemos centrado en los arreglos de curvas de Jordán no acotadas que se intersectan dos a dos en a lo sumo dos puntos, ya que estos fueron los arreglos con los que hemos tenido que tratar para la resolución de los problemas. De entre las diferentes técnicas para la construcción de arreglos hemos estudiado el método incremental, ya que conduce a algoritmos que son en general más sencillos desde el punto de vista de la codificación. Como resultado de este estudio hemos obtenido nuevas cotas que mejoran la complejidad del tiempo de construcción de estos arreglos con algoritmos incrementales. La nueva cota Ο(n λ3(n)) supone una mejora respecto a la cota conocida hasta el momento: Ο(nλ4(n)).También hemos visto que en ciertas condiciones estos arreglos pueden construirse en tiempo Ο(nλ2(n)), que es la cota óptima para la construcción de estos arreglos. Restringiendo el estudio a curvas específicas, hemos obtenido que los arreglos de n circunferencias de k radios diferentes pueden construirse en tiempo Ο(n2 min(log(k),α(n))), resultado válido también para arreglos de elipses, parábolas o hipérbolas de tamaños diferentes cuando las figuras son todas isotéticas.---ABSTRACT--- In this work some geometric problems related with facility location are studied. Facility location deals with location of one or more facilities (radars, stores, oil wells, etc.) in such way that some objective functions are to be optimized (to cover the maximum number of users, to minimize the cost of transportation, to avoid pollution in the nearby cities, etc.). These kind of real world problems give rise to very interesting geometrical problems. In the geometric version of many of these problems, users are represented as points while facilities are represented as different geometric objects depending on the shape of the corresponding facility: an annulus in the case of radars, radio or TV antennas, agricultural spraying devices, etc. A wedge in many illumination or surveillance applications. These two shapes are the geometric figures considered in this Thesis. The formal setting of the problem is the following: Given an annulus or a wedge of fixed size and a set of n points in the plane, locate the best position for the annulus or the wedge so that it covers as many points as possible. Those problems are solved by using arrangements of curves in the plane. Arrangements are a well known geometric structure. Here one deals with arrangements of unbounded Jordan curves which intersect each other in at most two points. Among the different techniques for computing arrangements, incremental method is used because it is easier for implementations. New time complexity upper bounds has been obtained in this Thesis for the construction of such arrangements by means of incremental algorithms. New upper bound is Ο(nλ3(n)) which improves the best known up to now Ο(nλ4(n)). It is shown also that sometimes this arrangements can be constructed in Ο(nλ2(n)), which is the optimal bound for constructing these arrangements. With respect to specific type of curves, one gives an Ο(n2 min(log(k),α(n))), algorithm that constructs the arrangement of a set of n circles of k different radii. This algorithm is also valid for ellipses parabolas or hyperbolas of k different sizes when all of them are isothetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is framed within the problem of analyzing the rationality of the components of two classical geometric constructions, namely the offset and the conchoid to an algebraic plane curve and, in the affirmative case, the actual computation of parametrizations. We recall some of the basic definitions and main properties on offsets (see [13]), and conchoids (see [15]) as well as the algorithms for parametrizing their rational components (see [1] and [16], respectively). Moreover, we implement the basic ideas creating two packages in the computer algebra system Maple to analyze the rationality of conchoids and offset curves, as well as the corresponding help pages. In addition, we present a brief atlas where the offset and conchoids of several algebraic plane curves are obtained, their rationality analyzed, and parametrizations are provided using the created packages.