20 resultados para Contaminación - Legislación


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aunque las primeras fábricas de tubos de poliéster reforzado con fibra de vidrio en España datan del año 1984, no es sino hasta el año 1996 cuando se comienza su utilización masiva como un sustituto de las tuberías de fribrocemento, que ya habían sido prohibidas por la legislación, debido a los efectos cancerígenos de este material. Desde entonces se ha prodigado la utilización de todas las diferentes tipologías de esta clase de tubería, de conformidad a los procesos de fabricación empleados que se encuentran recopilados en el AWWA Manual M45 (Fiberglass Pipe Design), obteniéndose muy diversos resultados. Durante estos años, ha surgido una creciente preocupación en los usuarios de este tipo de tuberías dadas las continuas y numerosas averías en todo el ámbito geográfico. Esto ha promovido el desarrollo de la presente investigaicón, que se ha dividido en dos partes y que ha concluido con la determinación de un nuevo mecanismo específico de fractura. La primera parte se centró en la obtención y desarrollo del modelo teórico que hemos venido a denominar como "Teoría de la Caja Mecánicamente Contaminada", y que está basado en la contaminación o separación por un impacto de dos de las tres capas que forman la tubería, la capa intermedia de arena y la capa más interna o "inner layer". La consecuencia es la disminución del canto resistente, la rotura del inner layer y la entrada de fluido a la capa de arena. Para la evaluación de la magnitud de esta separación se ha desarrollado un modelo analítico que ha determinado la existencia de una relación cuadrática que la rige, y que ha sido verificado mediante ensayos de impacto sobre probetas de tuberías, alcanzando ajustes de hasta el 92%. Así, se ha determinado que impactos de muy baja intensidad, del entorno de 90 a 160 Julios en tuberías Filament Winding continuo PN 16-20 (de 800 a 1000mm) pueden comprometer seriamente la integridad estructural de la tubería sin dejar, en un principio, muesca o traza alguna que pueda alertar del problema. Los siguientes pasos en el estudio se dirigieron a determinar qué otros mecanismos, aparte del golpe, podrían contaminar la tubería y a estudiar el consiguiente avance de la fractura a las capas externas. Se trataba además de analizar la aparición en el tubo de unas misteriosas manchas en forma de "piel de leopardo" y de otros fenómenos aparecidos en las averías como que algunas de las deformaciones de la rotura por presión interna son hacia el interior del tubo y no al revés, como habría sido de esperar a priori. Se optó entonces por comenzar la que ha constituido la segunda parte de la investigación. Para ello se recurrió a realizar ensayos hidráulicos en banco de pruebas a alta presión, cuyos resultados fueron sorprendentes al descubrir que en el proceso se producía la hidrólisis de la resina de poliéster no catalizada que fluía hacia el exterior del tubo. Como consecuencia se llevaron a cabo nuevos ensayos físicos y químicos para estudiar la migración del material y la hidrólisis producida en el proceso de fractura. En este estudio, resultó muy relevante el hecho de sobrepasar o no la presión que producía el desagarro entre las capas del tubo. En definitiva, en esta investigación, que ha constado de estudios analíticos y estudios experimentales, químicos y numéricos, se ha determinado un nuevo mecanismo de fractura que explica gran parte de los fallos acontecidos en las tuberías de poliéster reforzado con fibra de vidrio. Como aplicación se exponen recomendaciones para mejorar el comportamiento mecánico de esta tipología y evitar así los sobrecostes millonarios producidos por su reposición. Numerous and continuous failures in fiberglass reinforced polyester pipes of different companies and manufacturing processes of the AWWA Manual M45 (Fiberglass Pipe Design), have prompted the development of this research, that has concluded with a specific mechanism describing pipe fractures. This research was carried out via two independent studies. The first one is the development of the hypothesis that turned into the Mechanically Contaminated Layer Theory. This theory describes the fracture mchanism which explains a significant part of massive failures due to the existence of a sand layer placed near the neutral axis in the core making the composite very sensitive to impacts in fibreglass reinforced polyester pipes. These failures create interface delamination and consequently fluid can leak into supporting sand backfill thereby iniating the fracture process. In order to assess the delimination magnitude, an analytic method is developed and a squared root law between delamination and energy applied proposed. Vertical blunt ram testts on samples extracted from complete pipes have been carried out to verify this theory, reaching a goodness of fit up to 92%. It is concluded that low energy impacts, around 90-160J in 800-1000mm diameter PN 16-20 continuous filament winding pipes, can seriously compromise their structural integraty with no external trace. The next step in the study was to determine what other mechanism, apart from the brittle hit, could contaminate the pipe and to analyse the consequente advance of the fracture to the external layers. Another aim was to analyse two phenomena occurred in real pipe failures. The first one is the appearance on the tube of "leopard fur" stains on some of the analysed failures, and the other phenomenon is the "inverse fracture", in which the deformations of the failure due to internal pressure are towards the inside of the tube and not the other way round, as it would be expected. It was then chosen to follow a new branch of the investigation by hydraulic high-pressure bench tests that study seepage and load transmission. The results were very surprising as it was discovered that in the process, hydrolysis of the non-catalysed polyester resin occured, flowing towards the outer of the pipe, which entailed the development of chemical and physical tests of the exuded material to study material migration and hydrolysis of the fracture process. In this particular study it was relevant to exceed or not the pressure that produced the rip between the layers of the tube. In conclusion, a new breakage mechanism in FRP pies with sand-filled layer has been found, which explains a high part of the failure global cases. The whole failure process is justified by the Mechanically Contaminated Layer Theory, which has been corroborated by means of analytical, numerical and experimental studies. Several recommendations are also provided in order to improve the mechanical behaviour of this typology and avoid the millionaire overruns generated by its massive failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo definitivo de esta investigación es contribuir con la profundización del conocimiento en las tecnologías de remediación, específicamente las térmicas, debido a que la contaminación de suelos es motivo de preocupación por ser uno de los graves impactos ambientales que origina el hombre con sus actividades, especialmente las industriales, afectando a la salud de los seres humanos, y el medio ambiente, representando elevados costes de saneamiento y en ocasiones problemas graves de salud de las comunidades aledañas. Se establecen tres fases de investigación. En la primera se diseña el sistema de termodesorción a escala piloto, se desarrolla las corridas experimentales, la segunda con corridas en laboratorio para investigar sobre los parámetros que intervienen en el proyecto. Se hacen las corridas respectivas para determinar la eficacia del sistema, y la tercera fase que consiste en comparar los modelos teóricos de Hartley, con los de Hartley Graham –Bryce y el de Hamaker para determinar su aproximación con los resultados reales. Apoyado en investigaciones anteriores, se diseñó y construyó un sistema de desorción térmica, el cual consiste en un horno tipo caja con 4 calentadores (resistencias), y una campana con un filtro para evitar la contaminación atmosférica, así mismo, se diseñó un sistema de control que permitió hacer las corridas con 1/3 de la potencia, con una relación de encendido apagado 3:1 respectivamente. Para validar los resultados obtenidos en el estudio matemático, se compararon dos modelos con la finalidad cuál de ellos se aproxima más a la realidad, se tomaron los ensayos con sus tiempos de operación a las temperaturas y se trabajó a distintas bandas de temperaturas para verificar la fiabilidad del proceso matemático. La temperatura es un variable importante en los procesos de desorción, como los son también la humedad del suelo, pues esta va influir directamente en el tiempo de remediación, por lo que es importante tomarla en cuenta. De igual forma el tipo de suelo va influir en los resultados, siendo las arenas más aptas para este tipo de remediación. Los resultados de la modelización son presentados para temperaturas constantes, el cual difiere de la realidad, pues el proceso de calentamiento es lento y va en accenso dependiendo del contenido de humedad y de las propiedades del suelo. La experimentación realizada concluye con buenos resultados de la aplicación de sistemas de desorción de acuerdo a las variables de Panamá. Con relación al grado de cumplimiento respecto a las normativas actuales relacionadas a los límites máximos permitidos. Los resultados garantizan las posibilidades del proceso de remediación térmica de suelos contaminados con combustibles en rango de diésel, garantizando niveles aceptables de limpieza en un tiempo menor a otras metodologías no destructivas pudieran tomar. ABSTRACT The ultimate goal of this investigation is to enhance the pool of knowledge related to remediation technologies, specifically thermal desorption. The motivation for this study is based on concerns due to pollution of land as one of the most serious environmental impacts caused by anthropogenic effects, specially industrial activities, affecting human health and the environment in general, which represents high reclamation costs, and in some cases, serious health issues in nearby communities. Three phases have been established for this study. The first phase involves the design of a thermal desorption system as a pilot experiment, and associated tests. The second phase consists of laboratory testing to investigate the parameters that affect the investigation, as well as to determine the efficacy of the system. The third phase covers the comparison of theorical models as proposed by Hartley, Hartley Graham – Bryce, and Hamaker, as well as the evaluation of these models versus the laboratory results. Supported by previous researches, the thermal desorption system was designed and installed as a “box” type oven with four heaters (resistances) and one absorption hood with a filter to avoid atmospheric contamination. In the same way, a control system was designed allowing testing with 1/3 of the power, with an on/off rate of 3:1 respectively. In order to validate the results, two mathematical models were compared to identify which model is closer to the experimental results; test results were documented with respective durations and temperatures; and experiments were executed using different ranges of temperature to validate the consistency of the mathematical process. Temperature is an important variable that should be considered for the desorption processes, as well as the humidity content within the soil, that has direct influence over the required duration to achieve remediation. In the same manner, the type of soil also influences the results, where sands are more efficient for this type of remediation process. The results from this experiment are according to constant temperatures, which is not a complete representation of the reality, as the heating process is slow and the temperature gradually increases according to the humidity content and other properties of the soil. The experiment shows good results for the application of thermal desorption systems according to the variables in Panama, as well as the level of compliance required to fulfill current regulations and mandatory maximum limits. The results guarantee the possibility of soil thermo-remediation as a resource to clean sites that have been polluted with diesel-like combustibles, allowing acceptable levels in a period of time that is lower than with other non-destructive remediation technics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los polímeros compostables suponen en torno al 30% de los bioplásticos destinados a envasado, siendo a su vez esta aplicación el principal destino de la producción de este tipo de materiales que, en el año 2013, superó 1,6 millones de toneladas. La presente tesis aborda la biodegradación de los residuos de envases domésticos compostables en medio aerobio para dos tipos de formato y materiales, envase rígido de PLA (Clase I) y dos tipos de bolsas de PBAT+PLA (Clases II y III). Sobre esta materia se han realizado diversos estudios en escala de laboratorio pero para otro tipo de envases y biopolímeros y bajo condiciones controladas del compost con alguna proyección particularizada en plantas. La presente tesis da un paso más e investiga el comportamiento real de los envases plásticos compostables en la práctica del compostaje en tecnologías de pila y túnel, tanto a escala piloto como industrial, dentro del procedimiento y con las condiciones ambientales de instalaciones concretas. Para ello, con el método seguido, se han analizado los requisitos básicos que debe cumplir un envase compostable, según la norma UNE – EN 13432, evaluando el porcentaje de biodegradación de los envases objeto de estudio, en función de la pérdida de peso seco tras el proceso de compostaje, y la calidad del compost obtenido, mediante análisis físico-químico y de fitotoxicidad para comprobar que los materiales de estudio no aportan toxicidad. En cuanto a los niveles de biodegrabilidad, los resultados permiten concluir que los envases de Clase I se compostan adecuadamente en ambas tecnologías y que no requieren de unas condiciones de proceso muy exigentes para alcanzar niveles de biodegradación del 100%. En relación a los envases de Clase II, se puede asumir que se trata de un material que se composta adecuadamente en pila y túnel industrial pero que requiere de condiciones exigentes para alcanzar niveles de biodegradación del 100% al afectarle de forma clara la ubicación de las muestras en la masa a compostar, especialmente en el caso de la tecnología de túnel. Mientras el 90% de las muestras alcanza el 100% de biodegradación en pila industrial, tan sólo el 50% lo consigue en la tecnología de túnel a la misma escala. En cuanto a los envases de Clase III, se puede afirmar que es un material que se composta adecuadamente en túnel industrial pero que requiere de condiciones de cierta exigencia para alcanzar niveles de biodegradación del 100% al poderle afectar la ubicación de las muestras en la masa a compostar. El 75% de las muestras ensayadas en túnel a escala industrial alcanzan el 100% de biodegradación y, aunque no se ha ensayado este tipo de envase en la tecnología de pila al no disponer de muestras, cabe pensar que los resultados de biodegrabilidad que hubiera podido alcanzar habrían sido, como mínimo, los obtenidos para los envases de Clase II, al tratarse de materiales muy similares en composición. Por último, se concluye que la tecnología de pila es más adecuada para conseguir niveles de biodegradación superiores en los envases tipo bolsa de PBAT+PLA. Los resultados obtenidos permiten también sacar en conclusión que, en el diseño de instalaciones de compostaje para el tratamiento de la fracción orgánica recogida selectivamente, sería conveniente realizar una recirculación del rechazo del afino del material compostado para aumentar la probabilidad de someter este tipo de materiales a las condiciones ambientales adecuadas. Si además se realiza un triturado del residuo a la entrada del proceso, también se aumentaría la superficie específica a entrar en contacto con la masa de materia orgánica y por tanto se favorecerían las condiciones de biodegradación. En cuanto a la calidad del compost obtenido en los ensayos, los resultados de los análisis físico – químicos y de fitotoxicidad revelan que los niveles de concentración de microorganismo patógenos y de metales pesados superan, en la práctica totalidad de las muestras, los niveles máximos permitidos en la legislación vigente aplicable a productos fertilizantes elaborados con residuos. Mediante el análisis de la composición de los envases ensayados se constata que la causa de esta contaminación reside en la materia orgánica utilizada para compostar en los ensayos, procedente del residuo de origen doméstico de la denominada “fracción resto”. Esta conclusión confirma la necesidad de realizar una recogida selectiva de la fracción orgánica en origen, existiendo estudios que evidencian la mejora de la calidad del residuo recogido en la denominada “fracción orgánica recogida selectivamente” (FORM). Compostable polymers are approximately 30% of bioplastics used for packaging, being this application, at same time, the main destination for the production of such materials exceeded 1.6 million tonnes in 2013. This thesis deals with the biodegradation of household packaging waste compostable in aerobic medium for two format types and materials, rigid container made of PLA (Class I) and two types of bags made of PBAT + PLA (Classes II and III). There are several studies developed about this issue at laboratory scale but for other kinds of packaging and biopolymers and under composting controlled conditions with some specifically plants projection. This thesis goes one step further and researches the real behaviour of compostable plastic packaging in the composting practice in pile and tunnel technologies, both at pilot and industrial scale, within the procedure and environmental conditions of concrete devices. Therefore, with a followed method, basic requirements fulfilment for compostable packaging have been analysed according to UNE-EN 13432 standard. It has been assessed the biodegradability percentage of the packaging studied, based on loss dry weight after the composting process, and the quality of the compost obtained, based on physical-chemical analysis to check no toxicity provided by the studied materials. Regarding biodegradability levels, results allow to conclude that Class I packaging are composted properly in both technologies and do not require high exigent process conditions for achieving 100% biodegradability levels. Related to Class II packaging, it can be assumed that it is a material that composts properly in pile and tunnel at industrial scale but requires exigent conditions for achieving 100% biodegradability levels for being clearly affected by sample location in the composting mass, especially in tunnel technology case. While 90% of the samples reach 100% of biodegradation in pile at industrial scale, only 50% achieve it in tunnel technology at the same scale. Regarding Class III packaging, it can be said that it is a material properly composted in tunnel at industrial scale but requires certain exigent conditions for reaching 100% biodegradation levels for being possibly affected by sample location in the composting mass. The 75% of the samples tested in tunnel at industrial scale reaches 100% biodegradation. Although this kind of packaging has not been tested on pile technology due to unavailability of samples, it is judged that biodegradability results that could be reached would have been, at least, the same obtained for Class II packaging, as they are very similar materials in composition. Finally, it is concluded that pile technology is more suitable for achieving highest biodegradation levels in bag packaging type of PBAT+PLA. Additionally, the obtained results conclude that, in the designing of composting devices for treatment of organic fraction selectively collected, it would be recommended a recirculation of the refining refuse of composted material in order to increase the probability of such materials to expose to proper environmental conditions. If the waste is grinded before entering the process, the specific surface in contact with organic material would also be increased and therefore biodegradation conditions would be more favourable. Regarding quality of the compost obtained in the tests, physical-chemical and phytotoxicity analysis results reveal that pathogen microorganism and heavy metals concentrations exceed, in most of the samples, the maximum allowed levels by current legislation for fertilizers obtained from wastes. Composition analysis of tested packaging verifies that the reason for this contamination is the organic material used for composting tests, comes from the household waste called “rest fraction”. This conclusion confirms the need of a selective collection of organic fraction in the origin, as existing studies show the quality improvement of the waste collected in the so-called “organic fraction selectively collected” (FORM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis trata sobre la construcción modular ligera, dentro del contexto de la eficiencia energética y de cara a los conceptos de nZEB (near Zero Energy Building) y NZEB (Net Zero Energy Building) que se manejan en el ámbito europeo y específicamente dentro del marco regulador de la Directiva 2010/31 UE. En el contexto de la Unión Europea, el sector de la edificación representa el 40% del total del consumo energético del continente. Asumiendo la necesidad de reducir este consumo se han planteado, desde los organismos de dirección europeos, unos objetivos (objetivos 20-20-20) para hacer más eficiente el parque edificatorio. Estos objetivos, que son vinculantes en términos de legislación, comprometen a todos los estados miembros a conseguir la meta de reducción de consumo y emisiones de GEI (Gases de Efecto Invernadero) antes del año 2020. Estos conceptos de construcción modular ligera (CML) y eficiencia energética no suelen estar asociados por el hecho de que este tipo de construcción no suele estar destinada a un uso intensivo y no cuenta con unos cerramientos con niveles de aislamiento de acuerdo a las normativas locales o códigos de edificación de cada país. El objetivo de nZEB o NZEB, e incluso Energy Plus, según sea el caso, necesariamente (y así queda establecido en las normativas), dependerá no sólo de la mejora de los niveles de aislamiento de los edificios, sino también de la implementación de sistemas de generación renovables, independientemente del tipo de sistema constructivo con el que se trabaje e incluso de la tipología edificatoria. Si bien es cierto que los niveles de industrialización de la sociedad tecnológica actual han alcanzado varias de las fases del proceso constructivo - sobre todo en cuanto a elementos compositivos de los edificios- también lo es el hecho de que las cotas de desarrollo conseguidas en el ámbito de la construcción no llegan al nivel de evolución que se puede apreciar en otros campos de las ingenierías como la aeronáutica o la industria del automóvil. Aunque desde finales del siglo pasado existen modelos y proyectos testimoniales de construcción industrializada ligera (CIL) e incluso ya a principios del siglo XX, ejemplos de construcción modular ligera (CML), como la Casa Voisin, la industrialización de la construcción de edificios no ha sido una constante progresiva con un nivel de comercialización equiparable al de la construcción masiva y pesada. Los términos construcción industrializada, construcción prefabricada, construcción modular y construcción ligera, no siempre hacen referencia a lo mismo y no siempre son sinónimos entre sí. Un edificio puede ser prefabricado y no ser modular ni ligero y tal es el caso, por poner un ejemplo, de la construcción con paneles de hormigón prefabricado. Lo que sí es una constante es que en el caso de la construcción modular ligera, la prefabricación y la industrialización, casi siempre vienen implícitas en muchos ejemplos históricos y actuales. Con relación al concepto de eficiencia energética (nZEB o incluso NZEB), el mismo no suele estar ligado a la construcción modular ligera y/o ligera industrializada; más bien se le ve unido a la idea de cerramientos masivos con gran inercia térmica propios de estándares de diseño como el Passivhaus; y aunque comúnmente a la construcción ligera se le asocian otros conceptos que le restan valor (corta vida útil; función y formas limitadas, fuera de todo orden estético; limitación en los niveles de confort, etc.), los avances que se van alcanzando en materia de tecnologías para el aprovechamiento de la energía y sistemas de generación renovables, pueden conseguir revertir estas ideas y unificar el criterio de eficiencia + construcción modular ligera. Prototipos y proyectos académicos– como el concurso Solar Decathlon que se celebra desde el año 2002 promovido por el DOE (Departamento de Energía de los Estados Unidos), y que cuenta con ediciones europeas como las de los años 2010 y 2012, replantean la idea de la construcción industrializada, modular y ligera dentro del contexto de la eficiencia energética, con prototipos de viviendas de ± 60m2, propuestos por las universidades concursantes, y cuyo objetivo es alcanzar y/o desarrollar el concepto de NZEB (Net Zero Energy Building) o edificio de energía cero. Esta opción constructiva no sólo representa durabilidad, seguridad y estética, sino también, rapidez en la fabricación y montaje, además de altas prestaciones energéticas como se ha podido demostrar en las sucesivas ediciones del Solar Decathlon. Este tipo de iniciativas de desarrollo de tecnologías constructivas, no sólo apuntan a la eficiencia energética sino al concepto global de energía neta, Energía plus o cero emisiones de CO2. El nivel de emisiones por la fabricación y puesta en obra de los materiales de construcción depende, en muchos casos, no solo de la propia naturaleza del material, sino también de la cantidad de recursos utilizados para producir una unidad de medida determinada (kg, m3, m2, ml, etc). En este sentido podría utilizarse, en muchos casos, el argumento válido de que a menos peso, y a menos tamaño, menos emisiones globales de gases de efecto invernadero y menos contaminación. Para el trabajo de investigación de esta tesis se han tomado como referencias válidas para estudio, prototipos tanto de CML (Modular 3D) como de CIL (panelizado y elementos 2D), dado que para los fines de análisis de las prestaciones energéticas de los materiales de cerramiento, ambos sistemas son equiparables. Para poder llegar a la conclusión fundamental de este trabajo de tesis doctoral - que consiste en demostrar la viabilidad tecnológica/ industrial que supone la combinación de la eficiencia energética y la construcción modular ligera - se parte del estudio del estado de la técnica ( desde la selección de los materiales y los posibles procesos de industrialización en fábrica, hasta su puesta en obra, funcionamiento y uso, bajo los conceptos de consumo cero, cero emisiones de carbono y plus energético). Además -y con un estado de la técnica que identifica la situación actual- se llevan a cabo pruebas y ensayos con un prototipo a escala natural y células de ensayo, para comprobar el comportamiento de los elementos compositivos de los mismos, frente a unas condicionantes climáticas determinadas. Este tipo de resultados se contrastan con los obtenidos mediante simulaciones informáticas basadas en los mismos parámetros y realizadas en su mayoría mediante métodos simplificados de cálculos, validados por los organismos competentes en materia de eficiencia energética en la edificación en España y de acuerdo a la normativa vigente. ABSTRACT This thesis discusses lightweight modular construction within the context of energy efficiency in nZEB (near Zero Energy Building) and NZEB (Net Zero Energy Building) both used in Europe and, specifically, within the limits of the regulatory framework of the EU Directive 2010/31. In the European Union the building sector represents 40% of the total energy consumption of the continent. Due to the need to reduce this consumption, European decision-making institutions have proposed aims (20-20-20 aims) to render building equipment more efficient. These aims are bound by law and oblige all member States to endeavour to reduce consumption and GEI emissions before the year 2020. Lightweight modular construction concepts and energy efficiency are not generally associated because this type of building is not normally meant for intensive use and does not have closures with insulation levels which fit the local regulations or building codes of each country. The objective of nZEB or NZEB and even Energy Plus, depending on each case, will necessarily be associated (as established in the guidelines) not only with the improvement of insulation levels in buildings, but also with the implementation of renewable systems of generation, independent of the type of building system used and of the building typology. Although it is true that the levels of industrialisation in the technological society today have reached several of the building process phases - particularly in the composite elements of buildings - it is also true that the quotas of development achieved in the area of construction have not reached the evolutionary levelfound in other fields of engineering, such as aeronautics or the automobile industry. Although there have been models and testimonial projects of lightweight industrialised building since the end of last century, even going back as far as the beginning of the XX century with examples of lightweight modular construction such as the Voisin House, industrialisation in the building industry has not been constant nor is its comercialisation comparable to massive and heavy construction. The terms industrialised building, prefabricated building, modular building and lightweight building, do not always refer to the same thing and they are not always synonymous. A building can be prefabricated yet not be modular or lightweight. To give an example, this is the case of building with prefabricated concrete panels. What is constant is that, in the case of lightweight modular construction, prefabrication and industrialisation are almost always implicit in many historical and contemporary examples. Energy efficiency (nZEB or even NZEB) is not normally linked to lightweight modular construction and/or industrialised lightweight; rather, it is united to the idea of massive closureswith high thermal inertia typical of design standards such as the Passive House; and although other concepts that subtract value from it are generally associated with lightweight building (short useful life, limited forms and function, inappropriate toany aesthetic pattern; limitation in comfort levels, etc.), the advances being achieved in technology for benefitting from energy and renewable systems of generation may well reverse these ideas and unify the criteria of efficiency + lightweight modular construction. Academic prototypes and projects - such as the Solar Decathlon competition organised by the US Department of Energy and celebrated since 2002, with its corresponding European events such as those held in 2010 and 2012, place a different slant on the idea of industrialised, modular and lightweight building within the context of energy efficiency, with prototypes of homes measuring approximately 60m2, proposed by university competitors, whose aim is to reach and/or develop the NZEB concept, or the zero energy building. This building option does not only signify durability, security and aesthetics, but also fast manufacture and assembly. It also has high energy benefits, as has been demonstrated in successive events of the Solar Decathlon. This type of initiative for the development of building technologies, does not only aim at energy efficiency, but also at the global concept of net energy, Energy Plus and zero CO2 emissions. The level of emissions in the manufacture and introduction of building materials in many cases depends not only on the inherent nature of the material, but also on the quantity of resources used to produce a specific unit of measurement (kg, m3, m2, ml, etc.). Thus in many cases itcould be validly arguedthat with less weight and smaller size, there will be fewer global emissions of greenhouse effect gases and less contamination. For the research carried out in this thesis prototypes such as the CML (3D Module) and CIL (panelled and elements) have been used as valid study references, becauseboth systems are comparablefor the purpose of analysing the energy benefits of closure materials. So as to reach a basic conclusion in this doctoral thesis - that sets out to demonstrate the technological/industrial viability of the combination of energy efficiency and lightweight modular construction - the departure point is the study of the state of the technique (from the selection of materials and the possible processes of industrialisation in manufacture, to their use on site, functioning and use, respecting the concepts of zero consumption, zero emissions of carbon and Energy Plus). Moreover, with the state of the technique identifying the current situation, tests and practices have been carried out with a natural scale prototype and test cells so as to verify the behaviour of the composite elements of these in certain climatic conditions. These types of result are contrasted with those obtained through computer simulation based on the same parameters and done, principally, using simplified methods of calculation, validated by institutions competent in energy efficiency in Spanish building and in line with the rules in force.