18 resultados para Computer Imaging, Vision, Pattern Recognition and Graphics
Resumo:
The initial step in most facial age estimation systems consists of accurately aligning a model to the output of a face detector (e.g. an Active Appearance Model). This fitting process is very expensive in terms of computational resources and prone to get stuck in local minima. This makes it impractical for analysing faces in resource limited computing devices. In this paper we build a face age regressor that is able to work directly on faces cropped using a state-of-the-art face detector. Our procedure uses K nearest neighbours (K-NN) regression with a metric based on a properly tuned Fisher Linear Discriminant Analysis (LDA) projection matrix. On FG-NET we achieve a state-of-the-art Mean Absolute Error (MAE) of 5.72 years with manually aligned faces. Using face images cropped by a face detector we get a MAE of 6.87 years in the same database. Moreover, most of the algorithms presented in the literature have been evaluated on single database experiments and therefore, they report optimistically biased results. In our cross-database experiments we get a MAE of roughly 12 years, which would be the expected performance in a real world application.
Resumo:
This paper introduces APA (?Artificial Prion Assembly?): a pattern recognition system based on artificial prion crystalization. Specifically, the system exhibits the capability to classify patterns according to the resulting prion self- assembly simulated with cellular automata. Our approach is inspired in the biological process of proteins aggregation, known as prions, which are assembled as amyloid fibers related with neurodegenerative disorders.
Resumo:
The aim of this Master Thesis is the analysis, design and development of a robust and reliable Human-Computer Interaction interface, based on visual hand-gesture recognition. The implementation of the required functions is oriented to the simulation of a classical hardware interaction device: the mouse, by recognizing a specific hand-gesture vocabulary in color video sequences. For this purpose, a prototype of a hand-gesture recognition system has been designed and implemented, which is composed of three stages: detection, tracking and recognition. This system is based on machine learning methods and pattern recognition techniques, which have been integrated together with other image processing approaches to get a high recognition accuracy and a low computational cost. Regarding pattern recongition techniques, several algorithms and strategies have been designed and implemented, which are applicable to color images and video sequences. The design of these algorithms has the purpose of extracting spatial and spatio-temporal features from static and dynamic hand gestures, in order to identify them in a robust and reliable way. Finally, a visual database containing the necessary vocabulary of gestures for interacting with the computer has been created.