63 resultados para Cloud-based MapReduce computation
Resumo:
Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.
Resumo:
The simulation of interest rate derivatives is a powerful tool to face the current market fluctuations. However, the complexity of the financial models and the way they are processed require exorbitant computation times, what is in clear conflict with the need of a processing time as short as possible to operate in the financial market. To shorten the computation time of financial derivatives the use of hardware accelerators becomes a must.
Resumo:
Several types of parallelism can be exploited in logic programs while preserving correctness and efficiency, i.e. ensuring that the parallel execution obtains the same results as the sequential one and the amount of work performed is not greater. However, such results do not take into account a number of overheads which appear in practice, such as process creation and scheduling, which can induce a slow-down, or, at least, limit speedup, if they are not controlled in some way. This paper describes a methodology whereby the granularity of parallel tasks, i.e. the work available under them, is efficiently estimated and used to limit parallelism so that the effect of such overheads is controlled. The run-time overhead associated with the approach is usually quite small, since as much work is done at compile time as possible. Also,a number of run-time optimizations are proposed. Moreover, a static analysis of the overhead associated with the granularity control process is performed in order to decide its convenience. The performance improvements resulting from the incorporation of grain size control are shown to be quite good, specially for systems with medium to large parallel execution overheads.
Resumo:
The selection of predefined analytic grids (partitions of the numeric ranges) to represent input and output functions as histograms has been proposed as a mechanism of approximation in order to control the tradeoff between accuracy and computation times in several áreas ranging from simulation to constraint solving. In particular, the application of interval methods for probabilistic function characterization has been shown to have advantages over other methods based on the simulation of random samples. However, standard interval arithmetic has always been used for the computation steps. In this paper, we introduce an alternative approximate arithmetic aimed at controlling the cost of the interval operations. Its distinctive feature is that grids are taken into account by the operators. We apply the technique in the context of probability density functions in order to improve the accuracy of the probability estimates. Results show that this approach has advantages over existing approaches in some particular situations, although computation times tend to increase significantly when analyzing large functions.
Resumo:
Knowing the size of the terms to which program variables are bound at run-time in logic programs is required in a class of optimizations which includes granularity control and recursion elimination. Such size is difficult to even approximate at compile time and is thus generally computed at run-time by using (possibly predeñned) predicates which traverse the terms involved. We propose a technique which has the potential of performing this computation much more efficiently. The technique is based on ñnding program procedures which are called before those in which knowledge regarding term sizes is needed and which traverse the terms whose size is to be determined, and transforming such procedures so that they compute term sizes "on the fly". We present a systematic way of determining whether a given program can be transformed in order to compute a given term size at a given program point without additional term traversal. Also, if several such transformations are possible our approach allows ñnding minimal transformations under certain criteria. We also discuss the advantages and applications of our technique (specifically in the task of granularity control) and present some performance results.
Resumo:
Several types of parallelism can be exploited in logic programs while preserving correctness and efficiency, i.e. ensuring that the parallel execution obtains the same results as the sequential one and the amount of work performed is not greater. However, such results do not take into account a number of overheads which appear in practice, such as process creation and scheduling, which can induce a slow-down, or, at least, limit speedup, if they are not controlled in some way. This paper describes a methodology whereby the granularity of parallel tasks, i.e. the work available under them, is efficiently estimated and used to limit parallelism so that the effect of such overheads is controlled. The run-time overhead associated with the approach is usually quite small, since as much work is done at compile time as possible. Also, a number of run-time optimizations are proposed. Moreover, a static analysis of the overhead associated with the granularity control process is performed in order to decide its convenience. The performance improvements resulting from the incorporation of grain size control are shown to be quite good, specially for systems with médium to large parallel execution overheads.
Resumo:
Knowing the size of the terms to which program variables are bound at run-time in logic programs is required in a class of applications related to program optimization such as, for example, recursion elimination and granularity analysis. Such size is difficult to even approximate at compile time and is thus generally computed at run-time by using (possibly predefined) predicates which traverse the terms involved. We propose a technique based on program transformation which has the potential of performing this computation much more efficiently. The technique is based on finding program procedures which are called before those in which knowledge regarding term sizes is needed and which traverse the terms whose size is to be determined, and transforming such procedures so that they compute term sizes "on the fly". We present a systematic way of determining whether a given program can be transformed in order to compute a given term size at a given program point without additional term traversal. Also, if several such transformations are possible our approach allows finding minimal transformations under certain criteria. We also discuss the advantages and present some applications of our technique.
Resumo:
Knowing the size of the terms to which program variables are bound at run-time in logic programs is required in a class of applications related to program optimization such as, for example, granularity analysis and selection among different algorithms or control rules whose performance may be dependent on such size. Such size is difficult to even approximate at compile time and is thus generally computed at run-time by using (possibly predefined) predicates which traverse the terms involved. We propose a technique based on program transformation which has the potential of performing this computation much more efficiently. The technique is based on finding program procedures which are called before those in which knowledge regarding term sizes is needed and which traverse the terms whose size is to be determined, and transforming such procedures so that they compute term sizes "on the fly". We present a systematic way of determining whether a given program can be transformed in order to compute a given term size at a given program point without additional term traversal. Also, if several such transformations are possible our approach allows finding minimal transformations under certain criteria. We also discuss the advantages and applications of our technique and present some performance results.
Resumo:
Knowing the size of the terms to which program variables are bound at run-time in logic programs is required in a class of applications related to program optimization such as, for example, recursion elimination and granularity analysis. Such size is difficult to even approximate at compile time and is thus generally computed at run-time by using (possibly predefined) predicates which traverse the terms involved. We propose a technique based on program transformation which has the potential of performing this computation much more efficiently. The technique is based on finding program procedures which are called before those in which knowledge regarding term sizes is needed and which traverse the terms whose size is to be determined, and transforming such procedures so that they compute term sizes "on the fly". We present a systematic way of determining whether a given program can be transformed in order to compute a given term size at a given program point without additional term traversal. Also, if several such transformations are possible our approach allows finding minimal transformations under certain criteria. We also discuss the advantages and present some applications of our technique.
Resumo:
This paper describes a recommender system for sport videos, transmitted over the Internet and/or broadcast, in the context of large-scale events, which has been tested for the Olympic Games. The recommender is based on audiovisual consumption and does not depend on the number of users, running only on the client side. This avoids the concurrence, computation and privacy problems of central server approaches in scenarios with a large number of users, such as the Olympic Games. The system has been designed to take advantage of the information available in the videos, which is used along with the implicit information of the user and the modeling of his/her audiovisual content consumption. The system is thus transparent to the user, who does not need to take any specific action. Another important characteristic is that the system can produce recommendations for both live and recorded events. Testing has showed advantages compared to previous systems, as will be shown in the results.
Resumo:
It is well known that the evaluation of the influence matrices in the boundary-element method requires the computation of singular integrals. Quadrature formulae exist which are especially tailored to the specific nature of the singularity, i.e. log(*- x0)9 Ijx- JC0), etc. Clearly the nodes and weights of these formulae vary with the location Xo of the singular point. A drawback of this approach is that a given problem usually includes different types of singularities, and therefore a general-purpose code would have to include many alternative formulae to cater for all possible cases. Recently, several authors1"3 have suggested a type independent alternative technique based on the combination of standard Gaussian rules with non-linear co-ordinate transformations. The transformation approach is particularly appealing in connection with the p.adaptive version, where the location of the collocation points varies at each step of the refinement process. The purpose of this paper is to analyse the technique in eference 3. We show that this technique is asymptotically correct as the number of Gauss points increases. However, the method possesses a 'hidden' source of error that is analysed and can easily be removed.
Resumo:
Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms.
Resumo:
The popularity of MapReduce programming model has increased interest in the research community for its improvement. Among the other directions, the point of fault tolerance, concretely the failure detection issue seems to be a crucial one, but that until now has not reached its satisfying level. Motivated by this, I decided to devote my main research during this period into having a prototype system architecture of MapReduce framework with a new failure detection service, containing both analytical (theoretical) and implementation part. I am confident that this work should lead the way for further contributions in detecting failures to any NoSQL App frameworks, and cloud storage systems in general.
Resumo:
We discuss several methods, based on coordinate transformations, for the evaluation of singular and quasisingular integrals in the direct Boundary Element Method. An intrinsec error of some of these methods is detected. Two new transformations are suggested which improve on those currently available.
Resumo:
Species?habitat associations may contribute to the maintenance of species richness in tropical forests, but previous research has been conducted almost exclusively in lowland forests and has emphasized the importance of topography and edaphic conditions. Is the distribution of woody plant species in a Peruvian cloud forest determined by microhabitat conditions? What is the role of environmental characteristics and forest structure in habitat partitioning in a tropical cloud forest? We examined species?habitat associations in three 1-ha plots using the torus-translation method. We used three different criteria to define habitats for habitat partitioning analyses, based on microtopography, forest structure and both sets of factors. The number of species associated either positively or negatively with each habitat was assessed. Habitats defined on the basis of environmental conditions and forest structure discriminated a greater number of positive and negative associations at the scale of our analyses in a tropical cloud forest. Both topographic conditions and forest structure contribute to small-scale microhabitat partitioning of woody plant species in a Peruvian tropical cloud forest. Nevertheless, canopy species were most correlated with the distribution of environmental variables, while understorey species displayed associations with forest structure.