19 resultados para Biologically inspired
Resumo:
Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing these systems. Different anomaly detectors are combined using the immunological paradigm to optimize reputation system performance in response to evolving security requirements. As an example, the experiments show how a combination of detectors based on unsupervised techniques (self-organizing maps and genetic algorithms) can help to significantly reduce the global response time of the reputation system. The proposed solution offers many benefits: scalability, fast response to adversarial activities, ability to detect unknown attacks, high adaptability, and high ability in detecting and confining attacks. For these reasons, we believe that our solution is capable of coping with the dynamism of ambient intelligence systems and the growing requirements of security demands.
Resumo:
In this work, we propose the Networks of Evolutionary Processors (NEP) [2] as a computational model to solve problems related with biological phenomena. In our first approximation, we simulate biological processes related with cellular signaling and their implications in the metabolism, by using an architecture based on NEP (NEP architecture) and their specializations: Networks of Polarized Evolutionary Processors (NPEP) [1] and NEP Transducers (NEPT) [3]. In particular, we use this architecture to simulate the interplay between cellular processes related with the metabolism as the Krebs cycle and the malate-aspartate shuttle pathway (MAS) both being altered by signaling by calcium.
Resumo:
n this paper we propose the use of Networks of Bio-inspired Processors (NBP) to model some biological phenomena within a computational framework. In particular, we propose the use of an extension of NBP named Network Evolutionary Processors Transducers to simulate chemical transformations of substances. Within a biological process, chemical transformations of substances are basic operations in the change of the state of the cell. Previously, it has been proved that NBP are computationally complete, that is, they are able to solve NP complete problems in linear time, using massively parallel computations. In addition, we propose a multilayer architecture that will allow us to design models of biological processes related to cellular communication as well as their implications in the metabolic pathways. Subsequently, these models can be applied not only to biological-cellular instances but, possibly, also to configure instances of interactive processes in many other fields like population interactions, ecological trophic networks, in dustrial ecosystems, etc.
Resumo:
This paper presents a new simulation environment aimed at heterogeneous chained modular robots. This simulator allows testing the feasibility of the design, checking how modules are going to perform in the field and verifying hardware, electronics and communication designs before the prototype is built, saving time and resources. The paper shows how the simulator is built and how it can be set up to adapt to new designs. It also gives some examples of its use showing different heterogeneous modular robots running in different environments.