41 resultados para Audio-visual Speech Recognition, Visual Feature Extraction, Free-parts, Monolithic, ROI
Resumo:
The increasing demand of security oriented to mobile applications has raised the attention to biometrics, as a proper and suitable solution for providing secure environment to mobile devices. With this aim, this document presents a biometric system based on hand geometry oriented to mobile devices, involving a high degree of freedom in terms of illumination, hand rotation and distance to camera. The user takes a picture of their own hand in the free space, without requiring any flat surface to locate the hand, and without removals of rings, bracelets or watches. The proposed biometric system relies on an accurate segmentation procedure, able to isolate hands from any background; a feature extraction, invariant to orientation, illumination, distance to camera and background; and a user classification, based on k-Nearest Neighbor approach, able to provide an accurate results on individual identification. The proposed method has been evaluated with two own databases collected with a HTC mobile. First database contains 120 individuals, with 20 acquisitions of both hands. Second database is a synthetic database, containing 408000 images of hand samples in different backgrounds: tiles, grass, water, sand, soil and the like. The system is able to identify individuals properly with False Reject Rate of 5.78% and False Acceptance Rate of 0.089%, using 60 features (15 features per finger)
Resumo:
The design and development of spoken interaction systems has been a thoroughly studied research scope for the last decades. The aim is to obtain systems with the ability to interact with human agents with a high degree of naturalness and efficiency, allowing them to carry out the actions they desire using speech, as it is the most natural means of communication between humans. To achieve that degree of naturalness, it is not enough to endow systems with the ability to accurately understand the user’s utterances and to properly react to them, even considering the information provided by the user in his or her previous interactions. The system has also to be aware of the evolution of the conditions under which the interaction takes place, in order to act the most coherent way as possible at each moment. Consequently, one of the most important features of the system is that it has to be context-aware. This context awareness of the system can be reflected in the modification of the behaviour of the system taking into account the current situation of the interaction. For instance, the system should decide which action it has to carry out, or the way to perform it, depending on the user that requests it, on the way that the user addresses the system, on the characteristics of the environment in which the interaction takes place, and so on. In other words, the system has to adapt its behaviour to these evolving elements of the interaction. Moreover that adaptation has to be carried out, if possible, in such a way that the user: i) does not perceive that the system has to make any additional effort, or to devote interaction time to perform tasks other than carrying out the requested actions, and ii) does not have to provide the system with any additional information to carry out the adaptation, which could imply a lesser efficiency of the interaction, since users should devote several interactions only to allow the system to become adapted. In the state-of-the-art spoken dialogue systems, researchers have proposed several disparate strategies to adapt the elements of the system to different conditions of the interaction (such as the acoustic characteristics of a specific user’s speech, the actions previously requested, and so on). Nevertheless, to our knowledge there is not any consensus on the procedures to carry out these adaptation. The approaches are to an extent unrelated from one another, in the sense that each one considers different pieces of information, and the treatment of that information is different taking into account the adaptation carried out. In this regard, the main contributions of this Thesis are the following ones: Definition of a contextualization framework. We propose a unified approach that can cover any strategy to adapt the behaviour of a dialogue system to the conditions of the interaction (i.e. the context). In our theoretical definition of the contextualization framework we consider the system’s context as all the sources of variability present at any time of the interaction, either those ones related to the environment in which the interaction takes place, or to the human agent that addresses the system at each moment. Our proposal relies on three aspects that any contextualization approach should fulfill: plasticity (i.e. the system has to be able to modify its behaviour in the most proactive way taking into account the conditions under which the interaction takes place), adaptivity (i.e. the system has also to be able to consider the most appropriate sources of information at each moment, both environmental and user- and dialogue-dependent, to effectively adapt to the conditions aforementioned), and transparency (i.e. the system has to carry out the contextualizaton-related tasks in such a way that the user neither perceives them nor has to do any effort in providing the system with any information that it needs to perform that contextualization). Additionally, we could include a generality aspect to our proposed framework: the main features of the framework should be easy to adopt in any dialogue system, regardless of the solution proposed to manage the dialogue. Once we define the theoretical basis of our contextualization framework, we propose two cases of study on its application in a spoken dialogue system. We focus on two aspects of the interaction: the contextualization of the speech recognition models, and the incorporation of user-specific information into the dialogue flow. One of the modules of a dialogue system that is more prone to be contextualized is the speech recognition system. This module makes use of several models to emit a recognition hypothesis from the user’s speech signal. Generally speaking, a recognition system considers two types of models: an acoustic one (that models each of the phonemes that the recognition system has to consider) and a linguistic one (that models the sequences of words that make sense for the system). In this work we contextualize the language model of the recognition system in such a way that it takes into account the information provided by the user in both his or her current utterance and in the previous ones. These utterances convey information useful to help the system in the recognition of the next utterance. The contextualization approach that we propose consists of a dynamic adaptation of the language model that is used by the recognition system. We carry out this adaptation by means of a linear interpolation between several models. Instead of training the best interpolation weights, we make them dependent on the conditions of the dialogue. In our approach, the system itself will obtain these weights as a function of the reliability of the different elements of information available, such as the semantic concepts extracted from the user’s utterance, the actions that he or she wants to carry out, the information provided in the previous interactions, and so on. One of the aspects more frequently addressed in Human-Computer Interaction research is the inclusion of user specific characteristics into the information structures managed by the system. The idea is to take into account the features that make each user different from the others in order to offer to each particular user different services (or the same service, but in a different way). We could consider this approach as a user-dependent contextualization of the system. In our work we propose the definition of a user model that contains all the information of each user that could be potentially useful to the system at a given moment of the interaction. In particular we will analyze the actions that each user carries out throughout his or her interaction. The objective is to determine which of these actions become the preferences of that user. We represent the specific information of each user as a feature vector. Each of the characteristics that the system will take into account has a confidence score associated. With these elements, we propose a probabilistic definition of a user preference, as the action whose likelihood of being addressed by the user is greater than the one for the rest of actions. To include the user dependent information into the dialogue flow, we modify the information structures on which the dialogue manager relies to retrieve information that could be needed to solve the actions addressed by the user. Usage preferences become another source of contextual information that will be considered by the system towards a more efficient interaction (since the new information source will help to decrease the need of the system to ask users for additional information, thus reducing the number of turns needed to carry out a specific action). To test the benefits of the contextualization framework that we propose, we carry out an evaluation of the two strategies aforementioned. We gather several performance metrics, both objective and subjective, that allow us to compare the improvements of a contextualized system against the baseline one. We will also gather the user’s opinions as regards their perceptions on the behaviour of the system, and its degree of adaptation to the specific features of each interaction. Resumen El diseño y el desarrollo de sistemas de interacción hablada ha sido objeto de profundo estudio durante las pasadas décadas. El propósito es la consecución de sistemas con la capacidad de interactuar con agentes humanos con un alto grado de eficiencia y naturalidad. De esta manera, los usuarios pueden desempeñar las tareas que deseen empleando la voz, que es el medio de comunicación más natural para los humanos. A fin de alcanzar el grado de naturalidad deseado, no basta con dotar a los sistemas de la abilidad de comprender las intervenciones de los usuarios y reaccionar a ellas de manera apropiada (teniendo en consideración, incluso, la información proporcionada en previas interacciones). Adicionalmente, el sistema ha de ser consciente de las condiciones bajo las cuales transcurre la interacción, así como de la evolución de las mismas, de tal manera que pueda actuar de la manera más coherente en cada instante de la interacción. En consecuencia, una de las características primordiales del sistema es que debe ser sensible al contexto. Esta capacidad del sistema de conocer y emplear el contexto de la interacción puede verse reflejada en la modificación de su comportamiento debida a las características actuales de la interacción. Por ejemplo, el sistema debería decidir cuál es la acción más apropiada, o la mejor manera de llevarla a término, dependiendo del usuario que la solicita, del modo en el que lo hace, etcétera. En otras palabras, el sistema ha de adaptar su comportamiento a tales elementos mutables (o dinámicos) de la interacción. Dos características adicionales son requeridas a dicha adaptación: i) el usuario no ha de percibir que el sistema dedica recursos (temporales o computacionales) a realizar tareas distintas a las que aquél le solicita, y ii) el usuario no ha de dedicar esfuerzo alguno a proporcionar al sistema información adicional para llevar a cabo la interacción. Esto último implicaría una menor eficiencia de la interacción, puesto que los usuarios deberían dedicar parte de la misma a proporcionar información al sistema para su adaptación, sin ningún beneficio inmediato. En los sistemas de diálogo hablado propuestos en la literatura, se han propuesto diferentes estrategias para llevar a cabo la adaptación de los elementos del sistema a las diferentes condiciones de la interacción (tales como las características acústicas del habla de un usuario particular, o a las acciones a las que se ha referido con anterioridad). Sin embargo, no existe una estrategia fija para proceder a dicha adaptación, sino que las mismas no suelen guardar una relación entre sí. En este sentido, cada una de ellas tiene en cuenta distintas fuentes de información, la cual es tratada de manera diferente en función de las características de la adaptación buscada. Teniendo en cuenta lo anterior, las contribuciones principales de esta Tesis son las siguientes: Definición de un marco de contextualización. Proponemos un criterio unificador que pueda cubrir cualquier estrategia de adaptación del comportamiento de un sistema de diálogo a las condiciones de la interacción (esto es, el contexto de la misma). En nuestra definición teórica del marco de contextualización consideramos el contexto del sistema como todas aquellas fuentes de variabilidad presentes en cualquier instante de la interacción, ya estén relacionadas con el entorno en el que tiene lugar la interacción, ya dependan del agente humano que se dirige al sistema en cada momento. Nuestra propuesta se basa en tres aspectos que cualquier estrategia de contextualización debería cumplir: plasticidad (es decir, el sistema ha de ser capaz de modificar su comportamiento de la manera más proactiva posible, teniendo en cuenta las condiciones en las que tiene lugar la interacción), adaptabilidad (esto es, el sistema ha de ser capaz de considerar la información oportuna en cada instante, ya dependa del entorno o del usuario, de tal manera que adecúe su comportamiento de manera eficaz a las condiciones mencionadas), y transparencia (que implica que el sistema ha de desarrollar las tareas relacionadas con la contextualización de tal manera que el usuario no perciba la manera en que dichas tareas se llevan a cabo, ni tampoco deba proporcionar al sistema con información adicional alguna). De manera adicional, incluiremos en el marco propuesto el aspecto de la generalidad: las características del marco de contextualización han de ser portables a cualquier sistema de diálogo, con independencia de la solución propuesta en los mismos para gestionar el diálogo. Una vez hemos definido las características de alto nivel de nuestro marco de contextualización, proponemos dos estrategias de aplicación del mismo a un sistema de diálogo hablado. Nos centraremos en dos aspectos de la interacción a adaptar: los modelos empleados en el reconocimiento de habla, y la incorporación de información específica de cada usuario en el flujo de diálogo. Uno de los módulos de un sistema de diálogo más susceptible de ser contextualizado es el sistema de reconocimiento de habla. Este módulo hace uso de varios modelos para generar una hipótesis de reconocimiento a partir de la señal de habla. En general, un sistema de reconocimiento emplea dos tipos de modelos: uno acústico (que modela cada uno de los fonemas considerados por el reconocedor) y uno lingüístico (que modela las secuencias de palabras que tienen sentido desde el punto de vista de la interacción). En este trabajo contextualizamos el modelo lingüístico del reconocedor de habla, de tal manera que tenga en cuenta la información proporcionada por el usuario, tanto en su intervención actual como en las previas. Estas intervenciones contienen información (semántica y/o discursiva) que puede contribuir a un mejor reconocimiento de las subsiguientes intervenciones del usuario. La estrategia de contextualización propuesta consiste en una adaptación dinámica del modelo de lenguaje empleado en el reconocedor de habla. Dicha adaptación se lleva a cabo mediante una interpolación lineal entre diferentes modelos. En lugar de entrenar los mejores pesos de interpolación, proponemos hacer los mismos dependientes de las condiciones actuales de cada diálogo. El propio sistema obtendrá estos pesos como función de la disponibilidad y relevancia de las diferentes fuentes de información disponibles, tales como los conceptos semánticos extraídos a partir de la intervención del usuario, o las acciones que el mismo desea ejecutar. Uno de los aspectos más comúnmente analizados en la investigación de la Interacción Persona-Máquina es la inclusión de las características específicas de cada usuario en las estructuras de información empleadas por el sistema. El objetivo es tener en cuenta los aspectos que diferencian a cada usuario, de tal manera que el sistema pueda ofrecer a cada uno de ellos el servicio más apropiado (o un mismo servicio, pero de la manera más adecuada a cada usuario). Podemos considerar esta estrategia como una contextualización dependiente del usuario. En este trabajo proponemos la definición de un modelo de usuario que contenga toda la información relativa a cada usuario, que pueda ser potencialmente utilizada por el sistema en un momento determinado de la interacción. En particular, analizaremos aquellas acciones que cada usuario decide ejecutar a lo largo de sus diálogos con el sistema. Nuestro objetivo es determinar cuáles de dichas acciones se convierten en las preferencias de cada usuario. La información de cada usuario quedará representada mediante un vector de características, cada una de las cuales tendrá asociado un valor de confianza. Con ambos elementos proponemos una definición probabilística de una preferencia de uso, como aquella acción cuya verosimilitud es mayor que la del resto de acciones solicitadas por el usuario. A fin de incluir la información dependiente de usuario en el flujo de diálogo, llevamos a cabo una modificación de las estructuras de información en las que se apoya el gestor de diálogo para recuperar información necesaria para resolver ciertos diálogos. En dicha modificación las preferencias de cada usuario pasarán a ser una fuente adicional de información contextual, que será tenida en cuenta por el sistema en aras de una interacción más eficiente (puesto que la nueva fuente de información contribuirá a reducir la necesidad del sistema de solicitar al usuario información adicional, dando lugar en consecuencia a una reducción del número de intervenciones necesarias para llevar a cabo una acción determinada). Para determinar los beneficios de las aplicaciones del marco de contextualización propuesto, llevamos a cabo una evaluación de un sistema de diálogo que incluye las estrategias mencionadas. Hemos recogido diversas métricas, tanto objetivas como subjetivas, que nos permiten determinar las mejoras aportadas por un sistema contextualizado en comparación con el sistema sin contextualizar. De igual manera, hemos recogido las opiniones de los participantes en la evaluación acerca de su percepción del comportamiento del sistema, y de su capacidad de adaptación a las condiciones concretas de cada interacción.
Resumo:
We present a novel approach for the detection of severe obstructive sleep apnea (OSA) based on patients' voices introducing nonlinear measures to describe sustained speech dynamics. Nonlinear features were combined with state-of-the-art speech recognition systems using statistical modeling techniques (Gaussian mixture models, GMMs) over cepstral parameterization (MFCC) for both continuous and sustained speech. Tests were performed on a database including speech records from both severe OSA and control speakers. A 10 % relative reduction in classification error was obtained for sustained speech when combining MFCC-GMM and nonlinear features, and 33 % when fusing nonlinear features with both sustained and continuous MFCC-GMM. Accuracy reached 88.5 % allowing the system to be used in OSA early detection. Tests showed that nonlinear features and MFCCs are lightly correlated on sustained speech, but uncorrelated on continuous speech. Results also suggest the existence of nonlinear effects in OSA patients' voices, which should be found in continuous speech.
Resumo:
Esta tesis propone un sistema biométrico de geometría de mano orientado a entornos sin contacto junto con un sistema de detección de estrés capaz de decir qué grado de estrés tiene una determinada persona en base a señales fisiológicas Con respecto al sistema biométrico, esta tesis contribuye con el diseño y la implementación de un sistema biométrico de geometría de mano, donde la adquisición se realiza sin ningún tipo de contacto, y el patrón del usuario se crea considerando únicamente datos del propio individuo. Además, esta tesis propone un algoritmo de segmentación multiescala para solucionar los problemas que conlleva la adquisición de manos en entornos reales. Por otro lado, respecto a la extracción de características y su posterior comparación esta tesis tiene una contribución específica, proponiendo esquemas adecuados para llevar a cabo tales tareas con un coste computacional bajo pero con una alta precisión en el reconocimiento de personas. Por último, este sistema es evaluado acorde a la norma estándar ISO/IEC 19795 considerando seis bases de datos públicas. En relación al método de detección de estrés, esta tesis propone un sistema basado en dos señales fisiológicas, concretamente la tasa cardiaca y la conductancia de la piel, así como la creación de un innovador patrón de estrés que recoge el comportamiento de ambas señales bajo las situaciones de estrés y no-estrés. Además, este sistema está basado en lógica difusa para decidir el grado de estrés de un individuo. En general, este sistema es capaz de detectar estrés de forma precisa y en tiempo real, proporcionando una solución adecuada para sistemas biométricos actuales, donde la aplicación del sistema de detección de estrés es directa para evitar situaciónes donde los individuos sean forzados a proporcionar sus datos biométricos. Finalmente, esta tesis incluye un estudio de aceptabilidad del usuario, donde se evalúa cuál es la aceptación del usuario con respecto a la técnica biométrica propuesta por un total de 250 usuarios. Además se incluye un prototipo implementado en un dispositivo móvil y su evaluación. ABSTRACT: This thesis proposes a hand biometric system oriented to unconstrained and contactless scenarios together with a stress detection method able to elucidate to what extent an individual is under stress based on physiological signals. Concerning the biometric system, this thesis contributes with the design and implementation of a hand-based biometric system, where the acquisition is carried out without contact and the template is created only requiring information from a single individual. In addition, this thesis proposes an algorithm based on multiscale aggregation in order to tackle with the problem of segmentation in real unconstrained environments. Furthermore, feature extraction and matching are also a specific contributions of this thesis, providing adequate schemes to carry out both actions with low computational cost but with certain recognition accuracy. Finally, this system is evaluated according to international standard ISO/IEC 19795 considering six public databases. In relation to the stress detection method, this thesis proposes a system based on two physiological signals, namely heart rate and galvanic skin response, with the creation of an innovative stress detection template which gathers the behaviour of both physiological signals under both stressing and non-stressing situations. Besides, this system is based on fuzzy logic to elucidate the level of stress of an individual. As an overview, this system is able to detect stress accurately and in real-time, providing an adequate solution for current biometric systems, where the application of a stress detection system is direct to avoid situations where individuals are forced to provide the biometric data. Finally, this thesis includes a user acceptability evaluation, where the acceptance of the proposed biometric technique is assessed by a total of 250 individuals. In addition, this thesis includes a mobile implementation prototype and its evaluation.
Resumo:
This paper presents a methodology for adapting an advanced communication system for deaf people in a new domain. This methodology is a user-centered design approach consisting of four main steps: requirement analysis, parallel corpus generation, technology adaptation to the new domain, and finally, system evaluation. In this paper, the new considered domain has been the dialogues in a hotel reception. With this methodology, it was possible to develop the system in a few months, obtaining very good performance: good speech recognition and translation rates (around 90%) with small processing times.
Resumo:
Esta investigación se centra en el estudio de la dimensión audiovisual de la arquitectura, como aproximación intersensorial a la aprehensión e ideación del espacio. Poniendo en evidencia la complejidad de la relación hombre-medio, se plantea la necesidad de desarrollar nuevas metodologías y herramientas que tengan en cuenta dicha complejidad y que favorezcan el desarrollo del proyecto. Nos mueve en esta investigación la convicción de que los cambios rápidos y profundos que caracterizan nuestros tiempos en todos los ámbitos, social, económico, político… entrañan inevita-blemente nuevos modos de conocimiento y experimentación del espacio, y por tanto nuevos ejes de investigación. La creciente valoración, en todos los campos del conocimiento, de los aspectos subjetivos y sensoriales, el desarrollo de las tecnologías que ha cambiado completamente nuestras relaciones interpersonales y con el entorno, las nuevas capacidades de análisis, grabación y conservación y manipulación de datos y por ultimo, aunque no menos importante, la puesta a disposición democrá¬tica y global de todo el saber a través de Internet, imponen otra aproximación al hacer, concebir y vivir la arquitectura. Esta investigación se centra en un análisis crítico del estado de la cuestión, construyendo nue¬vas redes de relación entre disciplinas, que permitan plantear la dimensión audiovisual como un nuevo eje de investigación dentro de la arquitectura, poniendo en evidencia la necesidad de desa¬rrollar análisis de forma trasversal e interdisciplinar. Hemos prestado particular atención a la evolución de lo sonoro y su aproximación cualitativa a la arquitectura, mostrando como el sonido, con su capacidad de introducir el tiempo y los aspectos dinámicos (el movimiento, la presencia del cuerpo…), no es simplemente otro canal sensorial en la aprehensión del espacio, ya que su interacción con lo visual genera un espacio-tiempo indisociable, propio, característico de cada momento y lugar. A partir de este planteamiento se ha hecho una revisión metodológica dirigida a utilizar el reco¬rrido como herramienta de análisis, que permita estudiar la relación entre el espacio, la acción y la percepción audio-visual, cruzando para ello los datos correspondientes a la morfología del espacio, con los datos de la experiencia perceptiva individual y con los de los usos colectivos del espacio, utilizándose finalmente el video como un herramienta, no sólo de representación de lo real, sino también como instrumento de análisis, que permite tomar datos (grabaciones audio, video, obser¬vaciones…), aislarlos, estudiarlos, clasificarlos, ordenarlos, y finalmente, restituirlos mediante el montaje. Se ha realizado una primera experimentación “in situ” que ha servido para explorar la aplicación del método, planteando nuevas preguntas y abriendo líneas de análisis para ulteriores investigacio¬nes. ABSTRACT This research is focused on the study of the audiovisual dimension of architecture, as an in¬tersensorial approach to space apprehension and design. It is posed the necessity to develop new methodologies and tools that keep this complexity, as a contribution to the development of a project, by means of putting into evidence the sophistication of the relationship between man and media The research moves us to the conviction that the quick and relevant changes that confer a distinc-tion to these contemporary times all over the social, economic and political environments, involve, unavoidably, new ways of knowledge and experimentation on space, and therefore, new trends of research. The growing valuation of subjective and sensorial aspects all over the fields of the knowledge and the development of the technologies that have changed completely our interpersonal and environmental relationships, the new tools for analysis, recording, conservation and manipulation of data and, last but not least, the setting to democratic and global availability of the whole knowledge through Inter¬net, impose another approach to the making, conception and experience of architecture. This research deals with a critical analysis of the state–of- the-art of the matter, modelling new webs of relationship among disciplines that allow to outline the audiovisual dimension as a new focus of research on architecture, putting evidence into practice as it is necessary to develop any analysis in a transversal and interdisciplinary way. It is paid a special attention to the evolution of sound objects and their qualitative approach to ar¬chitecture, showing how sound, with its capacity to transmit time and dynamic aspects of things (movement, the presence of the body), it is not simply another sensorial channel in the apprehension of space, since its interaction with the visual thing generates an undetachable association of space and time, an specific one of every moment and place. Starting from this position a methodological revision has been made leading to use a walk as a tool for analysis that allows to study the relationship among the space, the action and the audio-visual perception, by means of crossing data corresponding to the morphology of space, with the data of a perceptive experience from the perspective of an individual observer and with those of the collective uses of the space, as video has been finally used as a tool, not only as a representation of the real thing, but also as a tool for analysis that allows to take isolated data (audio recordings, video, obser¬vations), to be studied, classified, and put into their appropriate place, and finally, to restore them by means of a multimedia set up. A first experimentation in situ has been carried out, being useful to explore a method of appli¬cation, outlining new questions and beginning with new ways of analysis for further research.
Resumo:
PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.
Resumo:
Desde hace más de 20 años, muchos grupos de investigación trabajan en el estudio de técnicas de reconocimiento automático de expresiones faciales. En los últimos años, gracias al avance de las metodologías, ha habido numerosos avances que hacen posible una rápida detección de las caras presentes en una imagen y proporcionan algoritmos de clasificación de expresiones. En este proyecto se realiza un estudio sobre el estado del arte en reconocimiento automático de emociones, para conocer los diversos métodos que existen en el análisis facial y en el reconocimiento de la emoción. Con el fin de poder comparar estos métodos y otros futuros, se implementa una herramienta modular y ampliable y que además integra un método de extracción de características que consiste en la obtención de puntos de interés en la cara y dos métodos para clasificar la expresión, uno mediante comparación de desplazamientos de los puntos faciales, y otro mediante detección de movimientos específicos llamados unidades de acción. Para el entrenamiento del sistema y la posterior evaluación del mismo, se emplean las bases de datos Cohn-Kanade+ y JAFFE, de libre acceso a la comunidad científica. Después, una evaluación de estos métodos es llevada a cabo usando diferentes parámetros, bases de datos y variando el número de emociones. Finalmente, se extraen conclusiones del trabajo y su evaluación, proponiendo las mejoras necesarias e investigación futura. ABSTRACT. Currently, many research teams focus on the study of techniques for automatic facial expression recognition. Due to the appearance of digital image processing, in recent years there have been many advances in the field of face detection, feature extraction and expression classification. In this project, a study of the state of the art on automatic emotion recognition is performed to know the different methods existing in facial feature extraction and emotion recognition. To compare these methods, a user friendly tool is implemented. Besides, a feature extraction method is developed which consists in obtaining 19 facial feature points. Those are passed to two expression classifier methods, one based on point displacements, and one based on the recognition of facial Action Units. Cohn-Kanade+ and JAFFE databases, both freely available to the scientific community, are used for system training and evaluation. Then, an evaluation of the methods is performed with different parameters, databases and varying the number of emotions. Finally, conclusions of the work and its evaluation are extracted, proposing some necessary improvements and future research.
Resumo:
La teoría de reconocimiento y clasificación de patrones y el aprendizaje automático son actualmente áreas de conocimiento en constante desarrollo y con aplicaciones prácticas en múltiples ámbitos de la industria. El propósito de este Proyecto de Fin de Grado es el estudio de las mismas así como la implementación de un sistema software que dé solución a un problema de clasificación de ruido impulsivo, concretamente mediante el desarrollo de un sistema de seguridad basado en la clasificación de eventos sonoros en tiempo real. La solución será integral, comprendiendo todas las fases del proceso, desde la captación de sonido hasta el etiquetado de los eventos registrados, pasando por el procesado digital de señal y la extracción de características. Para su desarrollo se han diferenciado dos partes fundamentales; una primera que comprende la interfaz de usuario y el procesado de la señal de audio donde se desarrollan las labores de monitorización y detección de ruido impulsivo y otra segunda centrada únicamente en la clasificación de los eventos sonoros detectados, definiendo una arquitectura de doble clasificador donde se determina si los eventos detectados son falsas alarmas o amenazas, etiquetándolos como de un tipo concreto en este segundo caso. Los resultados han sido satisfactorios, mostrando una fiabilidad global en el proceso de entorno al 90% a pesar de algunas limitaciones a la hora de construir la base de datos de archivos de audio, lo que prueba que un dispositivo de seguridad basado en el análisis de ruido ambiente podría incluirse en un sistema integral de alarma doméstico aumentando la protección del hogar. ABSTRACT. Pattern classification and machine learning are currently expertise areas under continuous development and also with extensive applications in many business sectors. The aim of this Final Degree Project is to study them as well as the implementation of software to carry on impulsive noise classification tasks, particularly through the development of a security system based on sound events classification. The solution will go over all process stages, from capturing sound to the labelling of the events recorded, without forgetting digital signal processing and feature extraction, everything in real time. In the development of the Project a distinction has been made between two main parts. The first one comprises the user’s interface and the audio signal processing module, where monitoring and impulsive noise detection tasks take place. The second one is focussed in sound events classification tasks, defining a double classifier architecture where it is determined whether detected events are false alarms or threats, labelling them from a concrete category in the latter case. The obtained results have been satisfactory, with an overall reliability of 90% despite some limitations when building the audio files database. This proves that a safety device based on the analysis of environmental noise could be included in a full alarm system increasing home protection standards.
Resumo:
El presente PFC tiene como objetivo el desarrollo de un gestor domótico basado en el dictado de voz de la red social WhatsApp. Dicho gestor no solo sustituirá el concepto dañino de que la integración de la domótica hoy en día es cara e inservible sino que acercará a aquellas personas con una discapacidad a tener una mejora en la calidad de vida. Estas personas, con un simple comando de voz a su aplicación WhatsApp de su terminal móvil, podrán activar o desactivar todos los elementos domóticos que su vivienda tenga instalados, “activar lámpara”, “encender Horno”, “abrir Puerta”… Todo a un muy bajo precio y utilizando tecnologías OpenSource El objetivo principal de este PFC es ayudar a la gente con una discapacidad a tener mejor calidad de vida, haciéndose independiente en las labores del hogar, ya que será el hogar quien haga las labores. La accesibilidad de este servicio, es por tanto, la mayor de las metas. Para conseguir accesibilidad para todas las personas, se necesita un servicio barato y de fácil aprendizaje. Se elige la red social WhatsApp como interprete, ya que no necesita de formación al ser una aplicación usada mayoritariamente en España y por la capacidad del dictado de voz, y se eligen las tecnologías OpenSource por ser la gran mayoría de ellas gratuitas o de pago solo el hardware. La utilización de la Red social WhatsApp se justifica por sí sola, en septiembre de 2015 se registraron 900 millones de usuarios. Este dato es fruto, también, de la reciente adquisición por parte de Facebook y hace que cumpla el primer requisito de accesibilidad para el servicio domotico que se presenta. Desde hace casi 5 años existe una API liberada de WhatsApp, que la comunidad OpenSource ha utilizado, para crear sus propios clientes o aplicaciones de envío de mensajes, usando la infraestructura de la red social. La empresa no lo aprueba abiertamente, pero la liberación de la API fue legal y su uso también lo es. Por otra parte la empresa se reserva el derecho de bloquear cuentas por el uso fraudulento de su infraestructura. Las tecnologías OpenSource utilizadas han sido, distribuciones Linux (Raspbian) y lenguajes de programación PHP, Python y BASHSCRIPT, todo cubierto por la comunidad, ofreciendo soporte y escalabilidad. Es por ello que se utiliza, como matriz y gestor domotico central, una RaspberryPI. Los servicios que el gestor ofrece en su primera versión incluyen el control domotico de la iluminación eléctrica general o personal, el control de todo tipo de electrodomésticos, el control de accesos para la puerta principal de entrada y el control de medios audiovisuales. ABSTRACT. This final thesis aims to develop a domotic manager based on the speech recognition capacity implemented in the social network, WhatsApp. This Manager not only banish the wrong idea about how expensive and useless is a domotic installation, this manager will give an opportunity to handicapped people to improve their quality of life. These people, with a simple voice command to their own WhatsApp, could enable or disable all the domotics devices installed in their living places. “On Lamp”, “ON Oven”, “Open Door”… This service reduce considerably the budgets because the use of OpenSource Technologies. The main achievement of this thesis is help handicapped people improving their quality of life, making independent from the housework. The house will do the work. The accessibility is, by the way, the goal to achieve. To get accessibility to a width range, we need a cheap, easy to learn and easy to use service. The social Network WhatsApp is one part of the answer, this app does not need explanation because is used all over the world, moreover, integrates the speech recognition capacity. The OpenSource technologies is the other part of the answer due to the low costs or, even, the free costs of their implementations. The use of the social network WhatsApp is explained by itself. In September 2015 were registered around 900 million users, of course, the recent acquisition by Facebook has helped in this astronomic number and match the first law of this service about the accessibility. Since five years exists, in the internet, a free WhatsApp API. The OpenSource community has used this API to develop their own messaging apps or desktop-clients, using the WhatsApp infrastructure. The company does not approve officially, however le API freedom is legal and the use of the API is legal too. On the other hand, the company can block accounts who makes a fraudulent use of his infrastructure. OpenSource technologies used in this thesis are: Linux distributions (Raspbian) and programming languages PHP, Python and BASHCSRIPT, all of these technologies are covered by the community offering support and scalability. Due to that, it is used a RaspberryPI as the Central Domotic Manager. The domotic services that currently this manager achieve are: Domotic lighting control, electronic devices control, access control to the main door and Media Control.
Resumo:
En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.
Resumo:
New trends in biometrics are oriented to mobile devices in order to increase the overall security in daily actions like bank account access, e-commerce or even document protection within the mobile. However, applying biometrics to mobile devices imply challenging aspects in biometric data acquisition, feature extraction or private data storage. Concretely, this paper attempts to deal with the problem of hand segmentation given a picture of the hand in an unknown background, requiring an accurate result in terms of hand isolation. For the sake of user acceptability, no restrictions are done on background, and therefore, hand images can be taken without any constraint, resulting segmentation in an exigent task. Multiscale aggregation strategies are proposed in order to solve this problem due to their accurate results in unconstrained and complicated scenarios, together with their properties in time performance. This method is evaluated with a public synthetic database with 480000 images considering different backgrounds and illumination environments. The results obtained in terms of accuracy and time performance highlight their capability of being a suitable solution for the problem of hand segmentation in contact-less environments, outperforming competitive methods in literature like Lossy Data Compression image segmentation (LDC).
Resumo:
Los objetivos de este proyecto son proporcionar la teoría, los ejercicios y otros recursos necesarios para que los alumnos de la EUIT de Telecomunicación con un nivel A1 en el Marco Común Europeo de Referencia para las Lenguas (MCERL) puedan obtener el nivel A2 en inglés sin necesidad de asistir a clases ni matricularse en cursos presenciales. La plataforma utilizada para conseguir este fin es Moodle, siendo utilizada en la página web de ILLLab. Este curso online sirve para alcanzar los conocimientos requeridos en la asignatura optativa Introduction to English for Professional and Academic Communication I que parte del nivel B1. Se realiza una propuesta de la gramática con sus correspondientes ejemplos y ejercicios basados todos ellos en adaptaciones de actividades publicadas en un corpus de libros de texto. Se añaden recursos (pequeñas lecturas, videos, enlaces) que se consideran apropiados para el tema tratado. Por otro lado, también se persigue solucionar el problema de los cursos de idiomas basados en e-learning ya que no proporcionan las herramientas necesarias para poner en práctica la expresión oral. Para ello, se aporta una aplicación basada en técnicas de reconocimiento de voz, con tres actividades en las que los resultados han de darse de forma hablada y con la correcta pronunciación. Así, se busca dar una base de conocimientos y experiencias prácticas para futuros proyectos basados en herramientas de síntesis y reconocimiento de voz, además de buscar un nuevo enfoque en el estudio de idiomas. Abstract: The objectives of this project are to provide the theory, exercises and other resources for students at the EUIT Telecommunications with A1 level in the Common European Framework of Reference for Languages (MCERL) in order to get A2 level in English without attending face-to-face courses. The platform used to achieve this aim is Moodle, which is currently being used in ILLLab website. This online course is due to attain the knowledge required in the optional subject Introduction to English for Professional and Academic Communication I which is based on the B1 level. It is a proposal of grammar with corresponding examples and exercises all based on adaptations of activities posted on a corpus of textbooks. It also adds resources (short readings, videos or links) that are appropriate for the subject. On the other hand, this project aims to solve the problem of language courses based on e-learning because these do not usually provide the student with the necessary tools to practice speaking. For this, we develop an application based on speech recognition techniques and propose three activities to practice speaking, and pronunciation. The proposal seeks to provide knowledge and practical experience for future projects based on synthesis tools and voice recognition, and means a new approach to e-learning courses for the study of languages.
Resumo:
As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.
Resumo:
In the information society large amounts of information are being generated and transmitted constantly, especially in the most natural way for humans, i.e., natural language. Social networks, blogs, forums, and Q&A sites are a dynamic Large Knowledge Repository. So, Web 2.0 contains structured data but still the largest amount of information is expressed in natural language. Linguistic structures for text recognition enable the extraction of structured information from texts. However, the expressiveness of the current structures is limited as they have been designed with a strict order in their phrases, limiting their applicability to other languages and making them more sensible to grammatical errors. To overcome these limitations, in this paper we present a linguistic structure named ?linguistic schema?, with a richer expressiveness that introduces less implicit constraints over annotations.