44 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La perdiz roja es la especie cinegética por excelencia en la península ibérica, cuya cría en cautividad y suelta controlada comenzó a regularse en los años 70 con la aparición del ICONA. La incubación controlada de huevos de perdiz es imprescindible, con fines cinegéticos y de preservación de la especie, y se desarrolla con incubadoras comerciales de pequeña y mediana escala, distribuidas en zonas rurales con acceso limitado y/o deficiente al suministro eléctrico. En nuestras latitudes el aporte de energía solar térmica se perfila como una posibilidad de mejorar la eficiencia energética de éstas y otras instalaciones y de reducir la dependencia energética exterior. Hay diversos factores físico-químicos que influyen en la calidad de la incubación: temperatura, humedad relativa, y concentración de gases, de los cuales sólo los dos primeros son habitualmente supervisados y controlados en este tipo de incubadoras. Esta Tesis surge en el marco de dos proyectos de cooperación con la AECID, y tiene como objetivos: la caracterización espacial de variables relevantes (temperatura (T), humedad relativa (HR)) en la incubadora comercial durante el proceso de incubación, la determinación de la relación existente entre la evolución de variables ambientales durante el proceso de incubación y la tasa de nacimientos (35-77%), así como el diseño y evaluación del sistema de apoyo solar térmico para determinar su potencial de utilización durante las incubaciones comerciales. La instalación de un número limitado de sensores permite la monitorización precisa del proceso de incubación de los huevos. Los resultados más relevantes indican que en incubaciones comerciales los gradientes de T y HR han sido despreciables (1ºC de diferencia entre las posiciones con mayor y menor T media y un 4,5% de diferencia entre las posiciones con mayor y menor HR), mientras que el seguimiento y ajuste (mediante modelos de crecimiento) de la concentración de CO2 (r2 entre 0,948 y 0,987 en las 5 incubaciones, para un total de 43315 huevos) permite valorar la actividad fisiológica de los huevos e incluso predecir la tasa de éxito (nacimientos), basándose en la concentración de CO2 estimada mediante modelos de crecimiento en el día 20 de incubación (r2 entre 0,997 y 0,994 según el modelo de estimación empleado). El sistema ha sido valorado muy positivamente por los productores (Finca Cinegética Dehesa Vieja de Galapagar). El aporte térmico se ha diseñado (con mínima intrusión en el sistema comercial) sobre la base de un sistema de enfriamiento de emergencia original de la incubadora, al que se han incorporado un colector solar, un depósito, un sistema de electroválvulas, una bomba de circulación y sensores de T en distintos puntos del sistema, y cuyo control ha sido automatizado. En esta Tesis se muestra que la contribución solar puede aportar hasta un 42% de las demandas de energía en nuestras condiciones geográficas para una temperatura de consigna dentro de la incubadora de 36.8ºC, sin afectar a la estabilidad de la temperatura. Además, el rendimiento del colector solar se ha acotado entre un 44% y un 85%, de acuerdo con los cálculos termodinámicos; valores que se mantienen dentro del rango aportado por el fabricante (61%). En el futuro se plantea evaluar el efecto de distintas estrategias de control, tales como controladores difusos, que incorporan el conocimiento experto al control automático. ABSTRACT The partridge is the quintessential game species in the Iberian Peninsula, which controlled breeding and release, began to be regulated in the 70s with the emergence of ICONA. The controlled incubation of eggs is essential, and takes place in commercial incubators of small and medium scale, distributed in rural areas with limited and/or inadequate access to power. In our latitudes the contribution of solar thermal energy is emerging as a possibility to improve the energy efficiency of the facilities and to reduce external energy dependence. There are various physicochemical factors influencing the quality of incubation: temperature, relative humidity and concentration of gases, of which only the first two are typically monitored and controlled in such incubators. This PhD comes within the framework of two cooperation projects with AECID and aims: the spatial characterization of relevant variables in a commercial incubator (temperature (T), and relative humidity (HR)), determining the relationships in the changes in environmental variables during incubation and birth rates (35-77%) as well as the design and evaluation of solar thermal support system to determine its potential use during commercial incubations; the installation of a limited number of sensors has allowed accurate monitoring of incubation of eggs. The most relevant results indicate that in commercial incubations, the gradients in T and HR have been negligible (1°C difference between the highest and lowest positions T and average 4.5% difference between the highest and lowest positions HR), while monitoring and fit using growth models of the concentration of CO2 (r2 between 0.948 and 0.987 in 5 incubations, for a total amount of 43,315 eggs) allows assessing the physiological activity of the eggs and even predict the success rate (hatchability), based on the estimated concentration of CO2 by using growth models on day 20 of incubation (r2 between 0.997 and 0.994 depending on the fit model).The system has been highly valued by producers (Finca Cinegética Dehesa Vieja de Galapagar). The hybrid heat system is designed (with minimal intrusion into the commercial system) based on an emergency cooling device, original in the incubator. New elements have been incorporated: a solar collector, a tank, a system of solenoid valves, a circulating pump and T sensors at various points of the system, whose control has been automated. This PhD shows that the solar contribution is responsible for up to 42% of energy demands in our geographical conditions for a setpoint temperature inside the incubator of 36.8ºC, without questioning the stability of the temperature. Furthermore, the efficiency of the solar collector has been bounded between 44% and 85%, according to thermodynamic calculations; values remain within the range provided by the manufacturer (61%). In the future it is proposed to evaluate the effect of different control strategies, such as fuzzy controllers, which incorporate the expertise to automated control.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The objective of this thesis is the development of cooperative localization and tracking algorithms using nonparametric message passing techniques. In contrast to the most well-known techniques, the goal is to estimate the posterior probability density function (PDF) of the position of each sensor. This problem can be solved using Bayesian approach, but it is intractable in general case. Nevertheless, the particle-based approximation (via nonparametric representation), and an appropriate factorization of the joint PDFs (using message passing methods), make Bayesian approach acceptable for inference in sensor networks. The well-known method for this problem, nonparametric belief propagation (NBP), can lead to inaccurate beliefs and possible non-convergence in loopy networks. Therefore, we propose four novel algorithms which alleviate these problems: nonparametric generalized belief propagation (NGBP) based on junction tree (NGBP-JT), NGBP based on pseudo-junction tree (NGBP-PJT), NBP based on spanning trees (NBP-ST), and uniformly-reweighted NBP (URW-NBP). We also extend NBP for cooperative localization in mobile networks. In contrast to the previous methods, we use an optional smoothing, provide a novel communication protocol, and increase the efficiency of the sampling techniques. Moreover, we propose novel algorithms for distributed tracking, in which the goal is to track the passive object which cannot locate itself. In particular, we develop distributed particle filtering (DPF) based on three asynchronous belief consensus (BC) algorithms: standard belief consensus (SBC), broadcast gossip (BG), and belief propagation (BP). Finally, the last part of this thesis includes the experimental analysis of some of the proposed algorithms, in which we found that the results based on real measurements are very similar with the results based on theoretical models.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The authors are from UPM and are relatively grouped, and all have intervened in different academic or real cases on the subject, at different times as being of different age. With precedent from E. Torroja and A. Páez in Madrid Spain Safety Probabilistic models for concrete about 1957, now in ICOSSAR conferences, author J.M. Antón involved since autumn 1967 for euro-steel construction in CECM produced a math model for independent load superposition reductions, and using it a load coefficient pattern for codes in Rome Feb. 1969, practically adopted for European constructions, giving in JCSS Lisbon Feb. 1974 suggestion of union for concrete-steel-al.. That model uses model for loads like Gumbel type I, for 50 years for one type of load, reduced to 1 year to be added to other independent loads, the sum set in Gumbel theories to 50 years return period, there are parallel models. A complete reliability system was produced, including non linear effects as from buckling, phenomena considered somehow in actual Construction Eurocodes produced from Model Codes. The system was considered by author in CEB in presence of Hydraulic effects from rivers, floods, sea, in reference with actual practice. When redacting a Road Drainage Norm in MOPU Spain an optimization model was realized by authors giving a way to determine the figure of Return Period, 10 to 50 years, for the cases of hydraulic flows to be considered in road drainage. Satisfactory examples were a stream in SE of Spain with Gumbel Type I model and a paper of Ven Te Chow with Mississippi in Keokuk using Gumbel type II, and the model can be modernized with more varied extreme laws. In fact in the MOPU drainage norm the redacting commission acted also as expert to set a table of return periods for elements of road drainage, in fact as a multi-criteria complex decision system. These precedent ideas were used e.g. in wide Codes, indicated in symposia or meetings, but not published in journals in English, and a condensate of contributions of authors is presented. The authors are somehow involved in optimization for hydraulic and agro planning, and give modest hints of intended applications in presence of agro and environment planning as a selection of the criteria and utility functions involved in bayesian, multi-criteria or mixed decision systems. Modest consideration is made of changing in climate, and on the production and commercial systems, and on others as social and financial.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La relación entre la estructura urbana y la movilidad ha sido estudiada desde hace más de 70 años. El entorno urbano incluye múltiples dimensiones como por ejemplo: la estructura urbana, los usos de suelo, la distribución de instalaciones diversas (comercios, escuelas y zonas de restauración, parking, etc.). Al realizar una revisión de la literatura existente en este contexto, se encuentran distintos análisis, metodologías, escalas geográficas y dimensiones, tanto de la movilidad como de la estructura urbana. En este sentido, se trata de una relación muy estudiada pero muy compleja, sobre la que no existe hasta el momento un consenso sobre qué dimensión del entorno urbano influye sobre qué dimensión de la movilidad, y cuál es la manera apropiada de representar esta relación. Con el propósito de contestar estas preguntas investigación, la presente tesis tiene los siguientes objetivos generales: (1) Contribuir al mejor entendimiento de la compleja relación estructura urbana y movilidad. y (2) Entender el rol de los atributos latentes en la relación entorno urbano y movilidad. El objetivo específico de la tesis es analizar la influencia del entorno urbano sobre dos dimensiones de la movilidad: número de viajes y tipo de tour. Vista la complejidad de la relación entorno urbano y movilidad, se pretende contribuir al mejor entendimiento de la relación a través de la utilización de 3 escalas geográficas de las variables y del análisis de la influencia de efectos inobservados en la movilidad. Para el análisis se utiliza una base de datos conformada por tres tipos de datos: (1) Una encuesta de movilidad realizada durante los años 2006 y 2007. Se obtuvo un total de 943 encuestas, en 3 barrios de Madrid: Chamberí, Pozuelo y Algete. (2) Información municipal del Instituto Nacional de Estadística: dicha información se encuentra enlazada con los orígenes y destinos de los viajes recogidos en la encuesta. Y (3) Información georeferenciada en Arc-GIS de los hogares participantes en la encuesta: la base de datos contiene información respecto a la estructura de las calles, localización de escuelas, parking, centros médicos y lugares de restauración. Se analizó la correlación entre e intra-grupos y se modelizaron 4 casos de atributos bajo la estructura ordinal logit. Posteriormente se evalúa la auto-selección a través de la estimación conjunta de las elecciones de tipo de barrio y número de viajes. La elección del tipo de barrio consta de 3 alternativas: CBD, Urban y Suburban, según la zona de residencia recogida en las encuestas. Mientras que la elección del número de viajes consta de 4 categorías ordinales: 0 viajes, 1-2 viajes, 3-4 viajes y 5 o más viajes. A partir de la mejor especificación del modelo ordinal logit. Se desarrolló un modelo joint mixed-ordinal conjunto. Los resultados indican que las variables exógenas requieren un análisis exhaustivo de correlaciones con el fin de evitar resultados sesgados. ha determinado que es importante medir los atributos del BE donde se realiza el viaje, pero también la información municipal es muy explicativa de la movilidad individual. Por tanto, la percepción de las zonas de destino a nivel municipal es considerada importante. En el contexto de la Auto-selección (self-selection) es importante modelizar conjuntamente las decisiones. La Auto-selección existe, puesto que los parámetros estimados conjuntamente son significativos. Sin embargo, sólo ciertos atributos del entorno urbano son igualmente importantes sobre la elección de la zona de residencia y frecuencia de viajes. Para analizar la Propensión al Viaje, se desarrolló un modelo híbrido, formado por: una variable latente, un indicador y un modelo de elección discreta. La variable latente se denomina “Propensión al Viaje”, cuyo indicador en ecuación de medida es el número de viajes; la elección discreta es el tipo de tour. El modelo de elección consiste en 5 alternativas, según la jerarquía de actividades establecida en la tesis: HOME, no realiza viajes durante el día de estudio, HWH tour cuya actividad principal es el trabajo o estudios, y no se realizan paradas intermedias; HWHs tour si el individuo reaiza paradas intermedias; HOH tour cuya actividad principal es distinta a trabajo y estudios, y no se realizan paradas intermedias; HOHs donde se realizan paradas intermedias. Para llegar a la mejor especificación del modelo, se realizó un trabajo importante considerando diferentes estructuras de modelos y tres tipos de estimaciones. De tal manera, se obtuvieron parámetros consistentes y eficientes. Los resultados muestran que la modelización de los tours, representa una ventaja sobre la modelización de los viajes, puesto que supera las limitaciones de espacio y tiempo, enlazando los viajes realizados por la misma persona en el día de estudio. La propensión al viaje (PT) existe y es específica para cada tipo de tour. Los parámetros estimados en el modelo híbrido resultaron significativos y distintos para cada alternativa de tipo de tour. Por último, en la tesis se verifica que los modelos híbridos representan una mejora sobre los modelos tradicionales de elección discreta, dando como resultado parámetros consistentes y más robustos. En cuanto a políticas de transporte, se ha demostrado que los atributos del entorno urbano son más importantes que los LOS (Level of Service) en la generación de tours multi-etapas. la presente tesis representa el primer análisis empírico de la relación entre los tipos de tours y la propensión al viaje. El concepto Propensity to Travel ha sido desarrollado exclusivamente para la tesis. Igualmente, el desarrollo de un modelo conjunto RC-Number of trips basado en tres escalas de medida representa innovación en cuanto a la comparación de las escalas geográficas, que no había sido hecha en la modelización de la self-selection. The relationship between built environment (BE) and travel behaviour (TB) has been studied in a number of cases, using several methods - aggregate and disaggregate approaches - and different focuses – trip frequency, automobile use, and vehicle miles travelled and so on. Definitely, travel is generated by the need to undertake activities and obtain services, and there is a general consensus that urban components affect TB. However researches are still needed to better understand which components of the travel behaviour are affected most and by which of the urban components. In order to fill the gap in the research, the present dissertation faced two main objectives: (1) To contribute to the better understanding of the relationship between travel demand and urban environment. And (2) To develop an econometric model for estimating travel demand with urban environment attributes. With this purpose, the present thesis faced an exhaustive research and computation of land-use variables in order to find the best representation of BE for modelling trip frequency. In particular two empirical analyses are carried out: 1. Estimation of three dimensions of travel demand using dimensions of urban environment. We compare different travel dimensions and geographical scales, and we measure self-selection contribution following the joint models. 2. Develop a hybrid model, integrated latent variable and discrete choice model. The implementation of hybrid models is new in the analysis of land-use and travel behaviour. BE and TB explicitly interact and allow richness information about a specific individual decision process For all empirical analysis is used a data-base from a survey conducted in 2006 and 2007 in Madrid. Spatial attributes describing neighbourhood environment are derived from different data sources: National Institute of Statistics-INE (Administrative: municipality and district) and GIS (circular units). INE provides raw data for such spatial units as: municipality and district. The construction of census units is trivial as the census bureau provides tables that readily define districts and municipalities. The construction of circular units requires us to determine the radius and associate the spatial information to our households. The first empirical part analyzes trip frequency by applying an ordered logit model. In this part is studied the effect of socio-economic, transport and land use characteristics on two travel dimensions: trip frequency and type of tour. In particular the land use is defined in terms of type of neighbourhoods and types of dwellers. Three neighbourhood representations are explored, and described three for constructing neighbourhood attributes. In particular administrative units are examined to represent neighbourhood and circular – unit representation. Ordered logit models are applied, while ordinal logit models are well-known, an intensive work for constructing a spatial attributes was carried out. On the other hand, the second empirical analysis consists of the development of an innovative econometric model that considers a latent variable called “propensity to travel”, and choice model is the choice of type of tour. The first two specifications of ordinal models help to estimate this latent variable. The latent variable is unobserved but the manifestation is called “indicators”, then the probability of choosing an alternative of tour is conditional to the probability of latent variable and type of tour. Since latent variable is unknown we fit the integral over its distribution. Four “sets of best variables” are specified, following the specification obtained from the correlation analysis. The results evidence that the relative importance of SE variables versus BE variables depends on how BE variables are measured. We found that each of these three spatial scales has its intangible qualities and drawbacks. Spatial scales play an important role on predicting travel demand due to the variability in measures at trip origin/destinations within the same administrative unit (municipality, district and so on). Larger units will produce less variation in data; but it does not affect certain variables, such as public transport supply, that are more significant at municipality level. By contrast, land-use measures are more efficient at district level. Self-selection in this context, is weak. Thus, the influence of BE attributes is true. The results of the hybrid model show that unobserved factors affect the choice of tour complexity. The latent variable used in this model is propensity to travel that is explained by socioeconomic aspects and neighbourhood attributes. The results show that neighbourhood attributes have indeed a significant impact on the choice of the type of tours either directly and through the propensity to travel. The propensity to travel has a different impact depending on the structure of each tour and increases the probability of choosing more complex tours, such as tours with many intermediate stops. The integration of choice and latent variable model shows that omitting important perception and attitudes leads to inconsistent estimates. The results also indicate that goodness of fit improves by adding the latent variable in both sequential and simultaneous estimation. There are significant differences in the sensitivity to the latent variable across alternatives. In general, as expected, the hybrid models show a major improvement into the goodness of fit of the model, compared to a classical discrete choice model that does not incorporate latent effects. The integrated model leads to a more detailed analysis of the behavioural process. Summarizing, the effect that built environment characteristics on trip frequency studied is deeply analyzed. In particular we tried to better understand how land use characteristics can be defined and measured and which of these measures do have really an impact on trip frequency. We also tried to test the superiority of HCM on this field. We can concluded that HCM shows a major improvement into the goodness of fit of the model, compared to classical discrete choice model that does not incorporate latent effects. And consequently, the application of HCM shows the importance of LV on the decision of tour complexity. People are more elastic to built environment attributes than level of services. Thus, policy implications must take place to develop more mixed areas, work-places in combination with commercial retails.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An important step to assess water availability is to have monthly time series representative of the current situation. In this context, a simple methodology is presented for application in large-scale studies in regions where a properly calibrated hydrologic model is not available, using the output variables simulated by regional climate models (RCMs) of the European project PRUDENCE under current climate conditions (period 1961–1990). The methodology compares different interpolation methods and alternatives to generate annual times series that minimise the bias with respect to observed values. The objective is to identify the best alternative to obtain bias-corrected, monthly runoff time series from the output of RCM simulations. This study uses information from 338 basins in Spain that cover the entire mainland territory and whose observed values of natural runoff have been estimated by the distributed hydrological model SIMPA. Four interpolation methods for downscaling runoff to the basin scale from 10 RCMs are compared with emphasis on the ability of each method to reproduce the observed behaviour of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index, defined as the ratio between potential evapotranspiration and precipitation. In addition, the comparison with respect to the global runoff reference of the UNH/GRDC dataset is evaluated, as a contrast of the “best estimator” of current runoff on a large scale. Results show that the bias is minimised using the direct original interpolation method and the best alternative for bias correction of the monthly direct runoff time series of RCMs is the UNH/GRDC dataset, although the formula proposed by Schreiber (1904) also gives good results

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Independent Components Analysis is a Blind Source Separation method that aims to find the pure source signals mixed together in unknown proportions in the observed signals under study. It does this by searching for factors which are mutually statistically independent. It can thus be classified among the latent-variable based methods. Like other methods based on latent variables, a careful investigation has to be carried out to find out which factors are significant and which are not. Therefore, it is important to dispose of a validation procedure to decide on the optimal number of independent components to include in the final model. This can be made complicated by the fact that two consecutive models may differ in the order and signs of similarly-indexed ICs. As well, the structure of the extracted sources can change as a function of the number of factors calculated. Two methods for determining the optimal number of ICs are proposed in this article and applied to simulated and real datasets to demonstrate their performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laminatedglass is composed of two glass layers and a thin intermediate PVB layer, strongly influencing PVB's viscoelastic behaviour its dynamic response. While natural frequencies are relatively easily identified even with simplified FE models, damping ratios are not identified with such an ease. In order to determine to what extent external factors influence dampingidentification, different tests have been carried out. The external factors considered, apart from temperature, are accelerometers, connection cables and the effect of the glass layers. To analyse the influence of the accelerometers and their connection cables a laser measuring device was employed considering three possibilities: sample without instrumentation, sample with the accelerometers fixed and sample completely instrumented. When the sample is completely instrumented, accelerometer readings are also analysed. To take into consideration the effect of the glass layers, tests were realised both for laminatedglass and monolithic samples. This paper presents in depth data analysis of the different configurations and establishes criteria for data acquisition when testing laminatedglass.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At present there is much literature that refers to the advantages and disadvantages of different methods of statistical and dynamical downscaling of climate variables projected by climate models. Less attention has been paid to other indirect variables, like runoff, which play a significant role in evaluating the impact of climate change on hydrological systems. Runoff presents a much greater bias in climate models than other climate variables, like temperature or precipitation. It is very important to identify the methods that minimize bias while downscaling runoff from the gridded results of climate models to the basin scale

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main purpose of a gene interaction network is to map the relationships of the genes that are out of sight when a genomic study is tackled. DNA microarrays allow the measure of gene expression of thousands of genes at the same time. These data constitute the numeric seed for the induction of the gene networks. In this paper, we propose a new approach to build gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling. The interactions induced by the Bayesian classifiers are based both on the expression levels and on the phenotype information of the supervised variable. Feature selection and bootstrap resampling add reliability and robustness to the overall process removing the false positive findings. The consensus among all the induced models produces a hierarchy of dependences and, thus, of variables. Biologists can define the depth level of the model hierarchy so the set of interactions and genes involved can vary from a sparse to a dense set. Experimental results show how these networks perform well on classification tasks. The biological validation matches previous biological findings and opens new hypothesis for future studies

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the presence of a river flood, operators in charge of control must take decisions based on imperfect and incomplete sources of information (e.g., data provided by a limited number sensors) and partial knowledge about the structure and behavior of the river basin. This is a case of reasoning about a complex dynamic system with uncertainty and real-time constraints where bayesian networks can be used to provide an effective support. In this paper we describe a solution with spatio-temporal bayesian networks to be used in a context of emergencies produced by river floods. In the paper we describe first a set of types of causal relations for hydrologic processes with spatial and temporal references to represent the dynamics of the river basin. Then we describe how this was included in a computer system called SAIDA to provide assistance to operators in charge of control in a river basin. Finally the paper shows experimental results about the performance of the model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El retroceso de las costas acantiladas es un fenómeno muy extendido sobre los litorales rocosos expuestos a la incidencia combinada de los procesos marinos y meteorológicos que se dan en la franja costera. Este fenómeno se revela violentamente como movimientos gravitacionales del terreno esporádicos, pudiendo causar pérdidas materiales y/o humanas. Aunque el conocimiento de estos riesgos de erosión resulta de vital importancia para la correcta gestión de la costa, el desarrollo de modelos predictivos se encuentra limitado desde el punto de vista geomorfológico debido a la complejidad e interacción de los procesos de desarrollo espacio-temporal que tienen lugar en la zona costera. Los modelos de predicción publicados son escasos y con importantes inconvenientes: a) extrapolación, extienden la información de registros históricos; b) empíricos, sobre registros históricos estudian la respuesta al cambio de un parámetro; c) estocásticos, determinan la cadencia y magnitud de los eventos futuros extrapolando las distribuciones de probabilidad extraídas de catálogos históricos; d) proceso-respuesta, de estabilidad y propagación del error inexplorada; e) en Ecuaciones en Derivadas Parciales, computacionalmente costosos y poco exactos. La primera parte de esta tesis detalla las principales características de los modelos más recientes de cada tipo y, para los más habitualmente utilizados, se indican sus rangos de aplicación, ventajas e inconvenientes. Finalmente como síntesis de los procesos más relevantes que contemplan los modelos revisados, se presenta un diagrama conceptual de la recesión costera, donde se recogen los procesos más influyentes que deben ser tenidos en cuenta, a la hora de utilizar o crear un modelo de recesión costera con el objetivo de evaluar la peligrosidad (tiempo/frecuencia) del fenómeno a medio-corto plazo. En esta tesis se desarrolla un modelo de proceso-respuesta de retroceso de acantilados costeros que incorpora el comportamiento geomecánico de materiales cuya resistencia a compresión no supere los 5 MPa. El modelo simula la evolución espaciotemporal de un perfil-2D del acantilado que puede estar formado por materiales heterogéneos. Para ello, se acoplan la dinámica marina: nivel medio del mar, cambios en el nivel medio del lago, mareas y oleaje; con la evolución del terreno: erosión, desprendimiento rocoso y formación de talud de derrubios. El modelo en sus diferentes variantes es capaz de incluir el análisis de la estabilidad geomecánica de los materiales, el efecto de los derrubios presentes al pie del acantilado, el efecto del agua subterránea, la playa, el run-up, cambios en el nivel medio del mar o cambios (estacionales o interanuales) en el nivel medio de la masa de agua (lagos). Se ha estudiado el error de discretización del modelo y su propagación en el tiempo a partir de las soluciones exactas para los dos primeros periodos de marea para diferentes aproximaciones numéricas tanto en tiempo como en espacio. Los resultados obtenidos han permitido justificar las elecciones que minimizan el error y los métodos de aproximación más adecuados para su posterior uso en la modelización. El modelo ha sido validado frente a datos reales en la costa de Holderness, Yorkshire, Reino Unido; y en la costa norte del lago Erie, Ontario, Canadá. Los resultados obtenidos presentan un importante avance en los modelos de recesión costera, especialmente en su relación con las condiciones geomecánicas del medio, la influencia del agua subterránea, la verticalización de los perfiles rocosos y su respuesta ante condiciones variables producidas por el cambio climático (por ejemplo, nivel medio del mar, cambios en los niveles de lago, etc.). The recession of coastal cliffs is a widespread phenomenon on the rocky shores that are exposed to the combined incidence of marine and meteorological processes that occur in the shoreline. This phenomenon is revealed violently and occasionally, as gravitational movements of the ground and can cause material or human losses. Although knowledge of the risks of erosion is vital for the proper management of the coast, the development of cliff erosion predictive models is limited by the complex interactions between environmental processes and material properties over a range of temporal and spatial scales. Published prediction models are scarce and present important drawbacks: extrapolation, that extend historical records to the future; empirical, that based on historical records studies the system response against the change in one parameter; stochastic, that represent of cliff behaviour based on assumptions regarding the magnitude and frequency of events in a probabilistic framework based on historical records; process-response, stability and error propagation unexplored; PDE´s, highly computationally expensive and not very accurate. The first part of this thesis describes the main features of the latest models of each type and, for the most commonly used, their ranges of application, advantages and disadvantages are given. Finally as a synthesis of the most relevant processes that include the revised models, a conceptual diagram of coastal recession is presented. This conceptual model includes the most influential processes that must be taken into account when using or creating a model of coastal recession to evaluate the dangerousness (time/frequency) of the phenomenon to medium-short term. A new process-response coastal recession model developed in this thesis has been designed to incorporate the behavioural and mechanical characteristics of coastal cliffs which are composed of with materials whose compressive strength is less than 5 MPa. The model simulates the spatial and temporal evolution of a cliff-2D profile that can consist of heterogeneous materials. To do so, marine dynamics: mean sea level, waves, tides, lake seasonal changes; is coupled with the evolution of land recession: erosion, cliff face failure and associated protective colluvial wedge. The model in its different variants can include analysis of material geomechanical stability, the effect of debris present at the cliff foot, groundwater effects, beach and run-up effects, changes in the mean sea level or changes (seasonal or inter-annual) in the mean lake level. Computational implementation and study of different numerical resolution techniques, in both time and space approximations, and the produced errors are exposed and analysed for the first two tidal periods. The results obtained in the errors analysis allow us to operate the model with a configuration that minimizes the error of the approximation methods. The model is validated through profile evolution assessment at various locations of coastline retreat on the Holderness Coast, Yorkshire, UK and on the north coast of Lake Erie, Ontario, Canada. The results represent an important stepforward in linking material properties to the processes of cliff recession, in considering the effect of groundwater charge and the slope oversteeping and their response to changing conditions caused by climate change (i.e. sea level, changes in lakes levels, etc.).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analysis of river flow using hydraulic modelling and its implications in derived environ-mental applications are inextricably connected with the way in which the river boundary shape is represented. This relationship is scale-dependent upon the modelling resolution which in turn determines the importance of a subscale performance of the model and the way subscale (surface and flow) processes are parameterised. Commonly, the subscale behaviour of the model relies upon a roughness parameterisation whose meaning depends on the dimensionality of the hydraulic model and the resolution of the topographic represen¬tation scale. This latter is, in turn, dependent on the resolution of the computational mesh as well as on the detail of measured topographic data. Flow results are affected by this interactions between scale and subscale parameterisation according to the dimensionality approach. The aim of this dissertation is the evaluation of these interactions upon hy¬draulic modelling results. Current high resolution topographic source availability induce this research which is tackled using a suitable roughness approach according to each di¬mensionality with the purpose of the interaction assessment. A 1D HEC-RAS model, a 2D raster-based diffusion-wave model with a scale-dependent distributed roughness parame-terisation and a 3D finite volume scheme with a porosity algorithm approach to incorporate complex topography have been used. Different topographic sources are assessed using a 1D scheme. LiDAR data are used to isolate the mesh resolution from the topographic content of the DEM effects upon 2D and 3D flow results. A distributed roughness parameterisation, using a roughness height approach dependent upon both mesh resolution and topographic content is developed and evaluated for the 2D scheme. Grain-size data and fractal methods are used for the reconstruction of topography with microscale information, required for some applications but not easily available. Sensitivity of hydraulic parameters to this topographic parameterisation is evaluated in a 3D scheme at different mesh resolu¬tions. Finally, the structural variability of simulated flow is analysed and related to scale interactions. Model simulations demonstrate (i) the importance of the topographic source in a 1D models; (ii) the mesh resolution approach is dominant in 2D and 3D simulations whereas in a 1D model the topographic source and even the roughness parameterisation impacts are more critical; (iii) the increment of the sensitivity to roughness parameterisa-tion in 1D and 2D schemes with detailed topographic sources and finer mesh resolutions; and (iv) the topographic content and microtopography impact throughout the vertical profile of computed 3D velocity in a depth-dependent way, whereas 2D results are not affected by topographic content variations. Finally, the spatial analysis shows that the mesh resolution controls high resolution model scale results, roughness parameterisation control 2D simulation results for a constant mesh resolution; and topographic content and micro-topography variations impacts upon the organisation of flow results depth-dependently in a 3D scheme. Resumen La topografía juega un papel fundamental en la distribución del agua y la energía en los paisajes naturales (Beven and Kirkby 1979; Wood et al. 1997). La simulación hidráulica combinada con métodos de medición del terreno por teledetección constituyen una poderosa herramienta de investigación en la comprensión del comportamiento de los flujos de agua debido a la variabilidad de la superficie sobre la que fluye. La representación e incorporación de la topografía en el esquema hidráulico tiene una importancia crucial en los resultados y determinan el desarrollo de sus aplicaciones al campo medioambiental. Cualquier simulación es una simplificación de un proceso del mundo real, y por tanto el grado de simplificación determinará el significado de los resultados simulados. Este razonamiento es particularmente difícil de trasladar a la simulación hidráulica donde aspectos de la escala tan diferentes como la escala de los procesos de flujo y de representación del contorno son considerados conjuntamente incluso en fases de parametrización (e.g. parametrización de la rugosidad). Por una parte, esto es debido a que las decisiones de escala vienen condicionadas entre ellas (e.g. la dimensionalidad del modelo condiciona la escala de representación del contorno) y por tanto interaccionan en sus resultados estrechamente. Y por otra parte, debido a los altos requerimientos numéricos y computacionales de una representación explícita de alta resolución de los procesos de flujo y discretización de la malla. Además, previo a la modelización hidráulica, la superficie del terreno sobre la que el agua fluye debe ser modelizada y por tanto presenta su propia escala de representación, que a su vez dependerá de la escala de los datos topográficos medidos con que se elabora el modelo. En última instancia, esta topografía es la que determina el comportamiento espacial del flujo. Por tanto, la escala de la topografía en sus fases de medición y modelización (resolución de los datos y representación topográfica) previas a su incorporación en el modelo hidráulico producirá a su vez un impacto que se acumulará al impacto global resultante debido a la escala computacional del modelo hidráulico y su dimensión. La comprensión de las interacciones entre las complejas geometrías del contorno y la estructura del flujo utilizando la modelización hidráulica depende de las escalas consideradas en la simplificación de los procesos hidráulicos y del terreno (dimensión del modelo, tamaño de escala computacional y escala de los datos topográficos). La naturaleza de la aplicación del modelo hidráulico (e.g. habitat físico, análisis de riesgo de inundaciones, transporte de sedimentos) determina en primer lugar la escala del estudio y por tanto el detalle de los procesos a simular en el modelo (i.e. la dimensionalidad) y, en consecuencia, la escala computacional a la que se realizarán los cálculos (i.e. resolución computacional). Esta última a su vez determina, el detalle geográfico con que deberá representarse el contorno acorde con la resolución de la malla computacional. La parametrización persigue incorporar en el modelo hidráulico la cuantificación de los procesos y condiciones físicas del sistema natural y por tanto debe incluir no solo aquellos procesos que tienen lugar a la escala de modelización, sino también aquellos que tienen lugar a un nivel subescalar y que deben ser definidos mediante relaciones de escalado con las variables modeladas explícitamente. Dicha parametrización se implementa en la práctica mediante la provisión de datos al modelo, por tanto la escala de los datos geográficos utilizados para parametrizar el modelo no sólo influirá en los resultados, sino también determinará la importancia del comportamiento subescalar del modelo y el modo en que estos procesos deban ser parametrizados (e.g. la variabilidad natural del terreno dentro de la celda de discretización o el flujo en las direcciones laterales y verticales en un modelo unidimensional). En esta tesis, se han utilizado el modelo unidimensional HEC-RAS, (HEC 1998b), un modelo ráster bidimensional de propagación de onda, (Yu 2005) y un esquema tridimensional de volúmenes finitos con un algoritmo de porosidad para incorporar la topografía, (Lane et al. 2004; Hardy et al. 2005). La geometría del contorno viene definida por la escala de representación topográfica (resolución de malla y contenido topográfico), la cual a su vez depende de la escala de la fuente cartográfica. Todos estos factores de escala interaccionan en la respuesta del modelo hidráulico a la topografía. En los últimos años, métodos como el análisis fractal y las técnicas geoestadísticas utilizadas para representar y analizar elementos geográficos (e.g. en la caracterización de superficies (Herzfeld and Overbeck 1999; Butler et al. 2001)), están promoviendo nuevos enfoques en la cuantificación de los efectos de escala (Lam et al. 2004; Atkinson and Tate 2000; Lam et al. 2006) por medio del análisis de la estructura espacial de la variable (e.g. Bishop et al. 2006; Ju et al. 2005; Myint et al. 2004; Weng 2002; Bian and Xie 2004; Southworth et al. 2006; Pozd-nyakova et al. 2005; Kyriakidis and Goodchild 2006). Estos métodos cuantifican tanto el rango de valores de la variable presentes a diferentes escalas como la homogeneidad o heterogeneidad de la variable espacialmente distribuida (Lam et al. 2004). En esta tesis, estas técnicas se han utilizado para analizar el impacto de la topografía sobre la estructura de los resultados hidráulicos simulados. Los datos de teledetección de alta resolución y técnicas GIS también están siendo utilizados para la mejor compresión de los efectos de escala en modelos medioambientales (Marceau 1999; Skidmore 2002; Goodchild 2003) y se utilizan en esta tesis. Esta tesis como corpus de investigación aborda las interacciones de esas escalas en la modelización hidráulica desde un punto de vista global e interrelacionado. Sin embargo, la estructura y el foco principal de los experimentos están relacionados con las nociones espaciales de la escala de representación en relación con una visión global de las interacciones entre escalas. En teoría, la representación topográfica debe caracterizar la superficie sobre la que corre el agua a una adecuada (conforme a la finalidad y dimensión del modelo) escala de discretización, de modo que refleje los procesos de interés. La parametrización de la rugosidad debe de reflejar los efectos de la variabilidad de la superficie a escalas de más detalle que aquellas representadas explícitamente en la malla topográfica (i.e. escala de discretización). Claramente, ambos conceptos están físicamente relacionados por un

Relevância:

40.00% 40.00%

Publicador:

Resumo:

System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the system" [1]. In the context of civil engineering, the system refers to a large scale structure such as a building, bridge, or an offshore structure, and identification mostly involves the determination of modal parameters (the natural frequencies, damping ratios, and mode shapes). This paper presents some modal identification results obtained using a state-of-the-art time domain system identification method (data-driven stochastic subspace algorithms [2]) applied to the output-only data measured in a steel arch bridge. First, a three dimensional finite element model was developed for the numerical analysis of the structure using ANSYS. Modal analysis was carried out and modal parameters were extracted in the frequency range of interest, 0-10 Hz. The results obtained from the finite element modal analysis were used to determine the location of the sensors. After that, ambient vibration tests were conducted during April 23-24, 2009. The response of the structure was measured using eight accelerometers. Two stations of three sensors were formed (triaxial stations). These sensors were held stationary for reference during the test. The two remaining sensors were placed at the different measurement points along the bridge deck, in which only vertical and transversal measurements were conducted (biaxial stations). Point estimate and interval estimate have been carried out in the state space model using these ambient vibration measurements. In the case of parametric models (like state space), the dynamic behaviour of a system is described using mathematical models. Then, mathematical relationships can be established between modal parameters and estimated point parameters (thus, it is common to use experimental modal analysis as a synonym for system identification). Stable modal parameters are found using a stabilization diagram. Furthermore, this paper proposes a method for assessing the precision of estimates of the parameters of state-space models (confidence interval). This approach employs the nonparametric bootstrap procedure [3] and is applied to subspace parameter estimation algorithm. Using bootstrap results, a plot similar to a stabilization diagram is developed. These graphics differentiate system modes from spurious noise modes for a given order system. Additionally, using the modal assurance criterion, the experimental modes obtained have been compared with those evaluated from a finite element analysis. A quite good agreement between numerical and experimental results is observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multi-channel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.