70 resultados para Android, illuminazione stradale, geolocalizzazione
Resumo:
El presente proyecto pretende ser una herramienta para la enseñanza de la lectoescritura (enseñar a leer y a escribir) para niños con discapacidad, haciendo para ello uso de una aplicación que se ejecuta en una tablet con Sistema Operativo (S.O.) Android. Existe un vacío en el mundo de las aplicaciones para tabletas en este campo en el que se intentará poner un grano de arena para, al menos, tener una aplicación que sirva de toma de contacto a los interesados en este campo. Para establecer las funcionalidades más adecuadas al propósito de la herramienta, se ha consultado a profesionales de la logopedia de un colegio de educación especial, con cuya colaboración se ha dado forma a la estructura de la misma. La implementación de la aplicación se ha llevado a cabo con programación en entorno Java para Android. Se han incluido diferentes recursos como imágenes, pictogramas y locuciones tanto elementos con licencia libre, como elementos propios generados ‘ex profeso’ para dar la forma final a la herramienta. Podemos decir que en general esta aplicación puede ser usada para enseña a leer y escribir a cualquier niño, pero se ha dotado de unas ciertas características que la confieren una orientación especial hacia niños con necesidades educativas especiales. Para ello se ha cuidado mucho la estética, para que ésta sea lo más simple y suave posible, para hacer especial hincapié en la atención de los niños y evitar su distracción con elementos visuales innecesarios. Se ha dotado de estímulos visuales y sonoros para fomentar su interés (aplausos en caso de acierto, colores para diferenciar aciertos y errores, etc.). Se han utilizado los tamaños de letra más grandes posibles (para las discapacidades visuales), etc. El mercado cuenta con una ingente cantidad de dispositivos Android, con características muy dispares, de tamaño de pantalla, resolución y versiones del S.O. entre otras. La aplicación se ha desarrollado tratando de dar cobertura al mayor porcentaje de ellos posible. El requisito mínimo de tamaño de pantalla sería de siete pulgadas. Esta herramienta no tiene demasiado sentido en dispositivos con pantallas menores por las características intrínsecas de la misma. No obstante se ha trabajado también en la configuración para dispositivos pequeños, como “smartphones”, no por su valor como herramienta para la enseñanza de la lectoescritura (aunque en algunos casos podría ser viable) sino más bien con fines de prueba y entrenamiento para profesores, padres o tutores que realizarán la labor docente con dispositivos tablet. Otro de los requisitos, como se ha mencionado, para poder ejecutar la aplicación sería la versión mínima de S.O., por debajo de la cual (versiones muy obsoletas) la aplicación sería inviable. Sirva este proyecto pues para cubrir, mediante el uso de la tecnología, un aspecto de la enseñanza con grandes oportunidades de mejora. ----------------------- This Project is aimed to be a tool for teaching reading and writing skills to handicapped children with an Android application. There are no Android applications available on this field, so it is intended to provide at least one option to take contact with. Speech therapy professionals from a special needs school have been asked for the most suitable functions to be included in this tool. The structure of this tool has been made with the cooperation of these professionals. The implementation of the application has been performed through Java coding for Android. Different resources have been included such as pictures, pictograms and sounds, including free licenses resources and self-developed resources. In general, it can be said that this application can be used to teach learning and writing skills to any given kid, however it has been provided of certain features that makes it ideal for children with special educational needs. It has been strongly taken into account the whole aesthetic to be as simple and soft as possible, in order to get attention of children, excluding any visual disturbing elements. It has been provided with sound and visual stimulations, to attract their interest (applauses in cases of correct answers, different colours to differentiate right or wrong answers), etc. There are many different types of Android devices, with very heterogeneous features regarding their screen size, resolution and O.S. version, etc., available today. The application has been developed trying to cover most of them. Minimum screen resolution is seven inches. This tool doesn’t seem to be very useful for smaller screens, for its inner features. Nevertheless, it has been developed for smaller devices as well, like smartphones, not intended to be a tool for teaching reading and writing skills (even it could be possible in some cases), but in a test and training context for teachers, parents or guardians who do the teaching work with tablet devices. Another requirement, as stated before, in order to be able to run the application, it would be the minimum O.S. version, below that (very obsolete versions) the application would become impracticable. Hope this project to be used to fulfill, by means of technology, one area of teaching with great improvement opportunities.
Resumo:
Este proyecto de fin de grado pretende demostrar la importancia y la utilidad de la creación de redes de dispositivos móviles conectados entre sí. Para ello se explicarán varios tipos de redes inalámbricas que permiten estas conexiones directas entre dispositivos sin la necesidad de un servidor. En estas redes inalámbricas se destacan las redes P2P y las redes Ad-hoc, las cuales se explicarán posteriormente. El despliegue de estas redes se puede encontrar en un amplio rango de campos como puede ser la agricultura, la medicina e incluso en el ámbito militar. Es objetivo de este proyecto, además, el estudio de la tecnología Wi-Fi Direct creada por la Wi-Fi Alliance. Como se explicará a lo largo del proyecto, Wi-Fi Direct está basado en las redes P2P. Esta tecnología permite a los dispositivos cercanos crear redes P2P a través de la red Wi-Fi sin la necesidad de un punto de acceso a Internet. Por otro lado, una gran cantidad de los dispositivos móviles que existen actualmente poseen el sistema operativo Android. Android ha incorporado en sus dispositivos más recientes la tecnología Wi-Fi Direct. Debido a ello han ido surgiendo aplicaciones que usando esta tecnología consiguen desde enviar ficheros hasta indicar la localización de un usuario. Esta tecnología combinada con este tipo de dispositivos puede ser muy útil para utilizar en casos de emergencia donde las infraestructuras de comunicaciones no estén disponibles ya que al no necesitar un punto de acceso a internet es posible la comunicación entre un usuario en peligro y otro que se encuentre dentro de un radio cercano. Por estos motivos otro de los principales objetivos de este proyecto es la implementación de una aplicación para dispositivos Android que use la tecnología Wi-Fi Direct para realizar varias funcionalidades diferentes, como es el intercambio de ficheros entre dispositivos y la creación de un chat para la comunicación simultanea entre dos dispositivos. Con esto se pretende conocer mejor el funcionamiento de la tecnología Wi-Fi Direct y demostrar su utilidad en los dispositivos móviles como son los dispositivos Android. ABSTRACT. This final degree Project tries to demonstrate the importance and utility of networking mobile devices. For this purpose several types of wireless networks will be explained. These networks allow direct connections between devices. The most prominent Wireless networks are P2P and Ad-hoc which will be explained later. The use of these networks can be found in a wide range of fields such as agriculture medicine, and even in the military sector. Besides, other aim of this project is the study of Wi-Fi Direct Technology which is created by Wi-Fi Alliance. As it explained along the project, Wi-Fi Direct is based on P2P networks. This technology lets nearby devices create P2P networks through Wi-Fi network without an Internet access point. On the other hand, a large number of mobile devices have the Android OS. Android has integrated Wi-Fi Direct technology in its latest devices. Because of this applications have emerged that using this technology they get from sending files to send the user’s location. This technology combined with these devices can be very useful to use in emergencies where communications infrastructures are not available. Since not need an Internet access point, communication between a user in danger and another within close radius is possible. For these reasons another of the main aims of this project is the implementation of an application for Android devices which use Wi-Fi Direct technology to perform several different functionalities, such as file exchange or chat for simultaneous communication between devices. This is intended to better understand the operation of Wi-Fi Direct technology and prove its utility on mobile devices such as Android devices.
Resumo:
Formula Racing Team Manager (FRTM) se trata de un juego de un solo jugador, para Android, donde el jugador tendrá como objetivo principal ascender desde la quinta división inicial hasta la primera y lograr allí ganar la clasificación por equipos ante 19 equipos manejados por el sistema. Por el camino tendrá que gestionar una gran cantidad de tareas distintas en el juego, desde la gestión del equipo en sí a la gestión estratégica de las carreras. Para conseguir el objetivo será básico lograr una buena gestión económica, la fuente principal de ganancias son los patrocinadores, pudiendo contar con un total de cuatro simultáneamente. El dinero conseguido se utilizará en mejorar el equipo (empleados, coche y pilotos) lo máximo posible para conseguir mejores resultados en carrera. Hay una gran cantidad de circuitos disponibles, todos reales, combinando circuitos históricos del calendario de Fórmula 1 con actuales y con circuitos otros populares en otras categorías (a destacar la inclusión de carreras de resistencia como las 500 millas de Indianápolis o las 24 horas de Le Mans). Será importante entender bien los parámetros de cada circuito para lograr un buen resultado en todos ellos. La temporada se divide en 20 grandes premios, formado cada uno por tres sesiones (entrenamientos, clasificación y carrera). En los entrenamientos el jugador podrá, durante dos horas, dar todas las vueltas que cree oportuno hasta que su tiempo se agote, para encontrar así la mejor configuración posible para el coche, y obtener los datos de consumos y desgastes que encuentre necesarios para emplearlos en carrera. En la sesión de clasificación (separada en tres rondas), se decidirán las posiciones de salida en carrera Antes de la carrera el jugador deberá decidir qué estrategia utilizar en ella, escogiendo la configuración del coche, los compuestos de neumáticos y las cargas de combustible a utilizar en cada parada. Durante la carrera también podrá cambiar ciertos parámetros en caso de que la situación de carrera no se adapte a sus expectativas, teniendo así un control total de lo sucedido en carrera, como si de un director deportivo de un equipo real de Fórmula 1 se tratase. Durante la carrera, se irán simulando las vueltas cuando el jugador así lo desee y lo indique mediante un reproductor disponible. Posteriormente, al terminar la carrera volverá a predominar la gestión económica del equipo por parte del jugador, teniendo que controlar los desgastes de cada una de las diez piezas distintas del coche para evitar roturas, y volviendo a poder entrenar a pilotos y empleados. El juego está disponible tanto en español como en inglés. ABSTRACT. Formula Racing Team Manager (FRTM) is a single player game, for Android, where the player has the main objective of promoting from the initial fifth division to the first one, and winning there the championship against 19 teams managed by the system. On the way, the player will have to manage a different number of tasks in the game, from the team management to the race strategic management. To complete that objective a basic key is to achieve a good economic management, the main source of incomes are the sponsors; being able to have a total of four at the same time. The money received will have to be spent on improving the team (staff, car and drivers) the best as possible to try to achieve even better race results. There are a lot of available circuits throughout the game, all of them real, combining some historical from Formula 1 calendar with actual ones, and also with some popular circuits from other categories (to highlight the inclusion of endurance races like the 500miles from Indianapolis and the 24 hours of Le Mans). It will be basic to fully understand the parameters from each circuit to achieve a good result in all of them. The season is divided in 20 Grand Prix, every one of them composed by three sessions (free practice, qualifying and race). In the Free Practice session the player will get the chance to driver all the laps he can in two hours, to try to get the best possible setup for the car and to obtain data from tyres wear and fuel consumption. On the qualifying session (composed by three rounds), the starting grid for the race will be decided. Before the race, the player will have to choose the strategy to use, deciding the car setup, the tyres compound and the fuel inputs for every pit stop to do. Also, throughout the race, the player will get the chance to change some parameters of that strategy in case of the race not going as expected. On the race, every lap will be simulated when the player decides. And, after the race is finished, the player will have to work again on the economy and team management, controlling the wear of every car part to avoid malfunctions, and being able to train drivers and staff. The game is available in both spanish and english.
Resumo:
El presente proyecto pretende ser una herramienta para la enseñanza de la lectoescritura (enseñar a leer y a escribir) para niños con discapacidad, haciendo para ello uso de una aplicación que se ejecuta en una tablet con Sistema Operativo (S.O.) Android. Existe un vacío en el mundo de las aplicaciones para tabletas en este campo en el que se intentará poner un grano de arena para, al menos, tener una aplicación que sirva de toma de contacto a los interesados en este campo. Para establecer las funcionalidades más adecuadas al propósito de la herramienta, se ha consultado a profesionales de la logopedia de un colegio de educación especial, con cuya colaboración se ha dado forma a la estructura de la misma. La implementación de la aplicación se ha llevado a cabo con programación en entorno Java para Android. Se han incluido diferentes recursos como imágenes, pictogramas y locuciones tanto elementos con licencia libre, como elementos propios generados ‘ex profeso’ para dar la forma final a la herramienta. Podemos decir que en general esta aplicación puede ser usada para enseña a leer y escribir a cualquier niño, pero se ha dotado de unas ciertas características que la confieren una orientación especial hacia niños con necesidades educativas especiales. Para ello se ha cuidado mucho la estética, para que ésta sea lo más simple y suave posible, para hacer especial hincapié en la atención de los niños y evitar su distracción con elementos visuales innecesarios. Se ha dotado de estímulos visuales y sonoros para fomentar su interés (aplausos en caso de acierto, colores para diferenciar aciertos y errores, etc.). Se han utilizado los tamaños de letra más grandes posibles (para las discapacidades visuales), etc. El mercado cuenta con una ingente cantidad de dispositivos Android, con características muy dispares, de tamaño de pantalla, resolución y versiones del S.O. entre otras. La aplicación se ha desarrollado tratando de dar cobertura al mayor porcentaje de ellos posible. El requisito mínimo de tamaño de pantalla sería de siete pulgadas. Esta herramienta no tiene demasiado sentido en dispositivos con pantallas menores por las características intrínsecas de la misma. No obstante se ha trabajado también en la configuración para dispositivos pequeños, como “smartphones”, no por su valor como herramienta para la enseñanza de la lectoescritura (aunque en algunos casos podría ser viable) sino más bien con fines de prueba y entrenamiento para profesores, padres o tutores que realizarán la labor docente con dispositivos tablet. Otro de los requisitos, como se ha mencionado, para poder ejecutar la aplicación sería la versión mínima de S.O., por debajo de la cual (versiones muy obsoletas) la aplicación sería inviable. Sirva este proyecto pues para cubrir, mediante el uso de la tecnología, un aspecto de la enseñanza con grandes oportunidades de mejora. ABSTRACT. This Project is aimed to be a tool for teaching reading and writing skills to handicapped children with an Android application. There are no Android applications available on this field, so it is intended to provide at least one option to take contact with. Speech therapy professionals from a special needs school have been asked for the most suitable functions to be included in this tool. The structure of this tool has been made with the cooperation of these professionals. The implementation of the application has been performed through Java coding for Android. Different resources have been included such as pictures, pictograms and sounds, including free licenses resources and self-developed resources. In general, it can be said that this application can be used to teach learning and writing skills to any given kid, however it has been provided of certain features that makes it ideal for children with special educational needs. It has been strongly taken into account the whole aesthetic to be as simple and soft as possible, in order to get attention of children, excluding any visual disturbing elements. It has been provided with sound and visual stimulations, to attract their interest (applauses in cases of correct answers, different colours to differentiate right or wrong answers), etc. There are many different types of Android devices, with very heterogeneous features regarding their screen size, resolution and O.S. version, etc., available today. The application has been developed trying to cover most of them. Minimum screen resolution is seven inches. This tool doesn’t seem to be very useful for smaller screens, for its inner features. Nevertheless, it has been developed for smaller devices as well, like smartphones, not intended to be a tool for teaching reading and writing skills (even it could be possible in some cases), but in a test and training context for teachers, parents or guardians who do the teaching work with tablet devices. Another requirement, as stated before, in order to be able to run the application, it would be the minimum O.S. version, below that (very obsolete versions) the application would become impracticable. Hope this project to be used to fulfill, by means of technology, one area of teaching with great improvement opportunities.
Resumo:
Este proyecto fin de carrera trata de mejorar los sistemas actuales de control en la visualización de diapositivas. La solución adoptada constará de un sistema con modelo cliente-servidor. El servidor formado por un mini ordenador, en este caso una Raspberry Pi, que estará conectado al proyector de video. Este servidor se mantendrá a la espera de recibir una conexión entrante vía Bluetooth. Una vez se realice la conexión interpretará los comandos mandados por el cliente a través de una API con formato JSON y realizará las acciones indicadas para el control de la presentación. El cliente será una aplicación móvil para dispositivos Android. A través de ella el profesor accederá al servidor escaneando un código QR que será proyectado y una vez conectado enviará los comandos de control de la presentación, tales como abrir una presentación, avanzar y retroceder diapositiva, etc. La solución final deberá ser eficiente, sencilla de utilizar y con un bajo coste para resultar atractiva y ser así útil en el mundo real. Para ello se contará con valores añadidos como el poder iniciar la presentación desde el dispositivo móvil, el mostrar las notas de la diapositiva actual o contar con un temporizador para permitir un mejor control sobre el tiempo disponible para la presentación. ABSTRACT. This final project pursues the improvement of the current presentation control systems. The solution it provides is based on a server-client architecture. The server will be a mini PC, a Raspberry Pi model in this case, that will be connected to a video projector or a screen monitor. This server will remain idle waiting for an incoming Bluetooth connection. Once the connection is accepted the server will parse the commands sent by the client through a JSON API and will execute them accordingly to control the system. The client we decided to develop is an Android application. The speaker will be able to connect with the server by scanning a QR code that will be generated and displayed into the projector or screen monitor. Once the connection is accepted the client will sent the commands to control the slides, such as opening a presentation, move forward and backwards, etc. The adopted solution must be efficient, easy to use and with low cost to be appealing and useful to the real world. To accomplish the task this project will count with improvements over the current systems, such as the possibility to open a presentation from the smartphone, the visualization of the current slide notes from the mobile phone and a countdown timer to have a better control over the available time for the presentation.
Resumo:
Desde el inicio de la globalización, el aprendizaje de la lengua inglesa se ha instaurado como una necesidad. Hoy en día, con la adopción del Espacio Europeo de Educación Superior este lenguaje no sólo se impone como un requisito para los estudiantes sino que se exige un nivel B2, lo cual significa un esfuerzo mayor tanto como para el alumno como para el profesor a la hora de hacer de este ejercicio un hábito y lograr la evaluación continua de los mismos. Este proyecto intenta extender las funcionalidades de una aplicación existente llamada Illlab con ejercicios que se adapten al nivel B2 y permitan la interacción entre alumnos durante la realización de estos ejercicios. El objetivo de esta aplicación es el de desarrollar ejercicios extra en la aplicación Illlab que añadan complejidad para el aprendizaje de inglés de un nivel B2 y que además se puedan realizar actividades entre los alumnos. La idea es hacer una aplicación de preguntas y respuestas “multiple choice” con cuatro opciones por pregunta. El fuerte de este juego está en presentar material variado sobre uso de la lengua y además permitir el juego entre varios alumnos. La extensión de ILLLab se plantea como un proyecto para desarrollar interfaces y funcionalidades adicionales en la antigua aplicación. La principal funcionalidad que se añade es un juego de preguntas y respuestas con opciones múltiples para un nivel B2 y las interfaces responden a necesidades de intercambio y manejo de contenido por Internet mediante estándares aceptados en el mundo del aprendizaje digital tales como Common Cartridge o SCORM. Este proyecto simplemente adapta la aplicación para su uso en un entorno de evaluación de actividades en el cual el profesor tiene acceso a las actividades que realizan los alumnos de un curso para su posterior evaluación. Antiguamente ILLLab sólo contenía ejercicios que se llevaban a cabo en el dispositivo móvil por lo que el control de estas actividades no era posible. La mejora se presenta como una interfaz Common Cartridge para el manejo del contenido, una interfaz de comunicación sobre servicios web tipo REST y el manejo de base de datos mediante Hibernate que agrupa una serie de librerías Java para la persistencia de objetos de la base de datos. ABSTRACT. Since the onset of globalization, the learning of the English language has become as a necessity. Today, with the adoption of the European Higher Education Area this language is not only imposed as a requirement for students but a B2 level is required, which means a greater effort both to the student and teacher when it comes to make the learning exercise a habit and achieve continuous evaluation of students. This project aims to extend the functionality of an existing application called Illlab with an exercise that suits the B2 level and allow interaction between students while performing these exercises. The purpose of this application is to develop an additional exercise in the application Illlab that adds complexity for learning English at B2 level and also enables the interaction among students. The main idea is to make an application in multiple choices style with four options. The strength of this game is to present varied material on use of Enlgish and also allow play between two students. ILLLab extension is conceived as a project to develop interfaces and additional functionalities in the old application. The main functionalities added are a game of questions and answers with multiple choices for a B2 level and interfaces that meet information exchange requirements and content management over the Internet using standards adopted in the world of digital learning such as Common Cartridge or SCORM. This project simply adapts the application for its use in an activities evaluation environment in which the teacher has access to the activities performed by students in a course for further evaluation. The former versión of ILLLab contained only exercises that were carried out on the mobile device so that the evaluation of these activities was not possible. The improvement comes as a Common Cartridge interface for content management, a communication interface with REST web services and a database access using Hibernate which groups a number of Java libraries for object persistence in the database.
Resumo:
En un ejercicio no extenuante la frecuencia cardíaca (FC) guarda una relación lineal con el consumo máximo de oxígeno (V O2max) y se suele usar como uno de los parámetros de referencia para cuantificar la capacidad del sistema cardiovascular. Normalmente la frecuencia cardíaca puede remplazar el porcentaje de V O2max en las prescripciones básicas de ejercicio para la mejora de la resistencia aeróbica. Para obtener los mejores resultados en la mejora de la resistencia aeróbica, el entrenamiento de los individuos se debe hacer a una frecuencia cardíaca suficientemente alta, para que el trabajo sea de predominio dinámico con la fosforilación oxidativa como fuente energética primaria, pero no tan elevada que pueda suponer un riesgo de infarto de miocardio para el sujeto que se está entrenando. Los programas de entrenamiento de base mínima y de base óptima, con ejercicios de estiramientos para prevenir lesiones, son algunos de los programas más adecuados para el entrenamiento de la resistencia aeróbica porque maximizan los beneficios y minimizan los riesgos para el sistema cardiovascular durante las sesiones de entrenamiento. En esta tesis, se ha definido un modelo funcional para sistemas de inteligencia ambiental capaz de monitorizar, evaluar y entrenar las cualidades físicas que ha sido validado cuando la cualidad física es la resistencia aeróbica. El modelo se ha implementado en una aplicación Android utilizando la camiseta inteligente “GOW running” de la empresa Weartech. El sistema se ha comparado en el Laboratorio de Fisiología del Esfuerzo (LFE) de la Universidad Politécnica de Madrid (UPM) durante la realización de pruebas de esfuerzo. Además se ha evaluado un sistema de guiado con voz para los entrenamientos de base mínima y de base óptima. También el desarrollo del software ha sido validado. Con el uso de cuestionarios sobre las experiencias de los usuarios utilizando la aplicación se ha evaluado el atractivo de la misma. Por otro lado se ha definido una nueva metodología y nuevos tipos de cuestionarios diseñados para evaluar la utilidad que los usuarios asignan al uso de un sistema de guiado por voz. Los resultados obtenidos confirman la validez del modelo. Se ha obtenido una alta concordancia entre las medidas de FC hecha por la aplicación Android y el LFE. También ha resultado que los métodos de estimación del VO2max de los dos sistemas pueden ser intercambiables. Todos los usuarios que utilizaron el sistema de guiado por voz para entrenamientos de 10 base mínima y de base óptimas de la resistencia aeróbica consiguieron llevar a cabo las sesiones de entrenamientos con un 95% de éxito considerando unos márgenes de error de un 10% de la frecuencia cardíaca máxima teórica. La aplicación fue atractiva para los usuarios y hubo también una aceptación del sistema de guiado por voz. Se ha obtenido una evaluación psicológica positiva de la satisfacción de los usuarios que interactuaron con el sistema. En conclusión, se ha demostrado que es posible desarrollar sistemas de Inteligencia Ambiental en dispositivos móviles para la mejora de la salud. El modelo definido en la tesis es el primero modelo funcional teórico de referencia para el desarrollo de este tipo de aplicaciones. Posteriores estudios se realizarán con el objetivo de extender dicho modelo para las demás cualidades físicas que suponen modelos fisiológicos más complejos como por ejemplo la flexibilidad. Abstract In a non-strenuous exercise, the heart rate (HR) shows a linear relationship with the maximum volume of oxygen consumption (V O2max) and serves as an indicator of performance of the cardiovascular system. The heart rate replaces the %V O2max in exercise program prescription to improve aerobic endurance. In order to achieve an optimal effect during endurance training, the athlete needs to work out at a heart rate high enough to trigger the aerobic metabolism, while avoiding the high heart rates that bring along significant risks of myocardial infarction. The minimal and optimal base training programs, followed by stretching exercises to prevent injuries, are adequate programs to maximize benefits and minimize health risks for the cardiovascular system during single session training. In this thesis, we have defined an ambient intelligence system functional model that monitors, evaluates and trains physical qualities, and it has been validated for aerobic endurance. It is based on the Android System and the “GOW Running” smart shirt. The system has been evaluated during functional assessment stress testing of aerobic endurance in the Stress Physiology Laboratory (SPL) of the Technical University of Madrid (UPM). Furthermore, a voice system, designed to guide the user through minimal and optimal base training programs, has been evaluated. Also the software development has been evaluated. By means of user experience questionnaires, we have rated the attractiveness of the android application. Moreover, we have defined a methodology and a new kind of questionnaires in order to assess the user experience with the audio exercise guide system. The results obtained confirm the model. We have a high similarity between HR measurements made of our system and the one used by SPL. We have also a high correlation between the VO2max estimations of our system and the SPL system. All users, that tried the voice guidance system for minimal and optimal base training programs, were able to perform the 95% of the training session with an error lower than the 10% of theoretical maximum heart rate. The application appeared attractive to the users, and it has also been proven that the voice guidance system was useful. As result we obtained a positive evaluation of the users' satisfaction while they interacted with the system. In conclusion, it has been demonstrated that is possible to develop mobile Ambient Intelligence applications for the improvement of healthy lifestyle. AmIRTEM model is the first theoretical reference functional model for the design of this kind of applications. Further studies will be realized in order to extend the AmIRTEM model to other physical qualities whose physiological models are more complex than the aerobic endurance.
Resumo:
Nowadays, a wide offer of mobile augmented reality (mAR) applications is available at the market, and the user base of mobile AR-capable devices -smartphones- is rapidly increasing. Nevertheless, likewise to what happens in other mobile segments, business models to put mAR in value are not clearly defined yet. In this paper, we focus on sketching the big picture of the commercial offer of mAR applications, in order to inspire a posterior analysis of business models that may successfully support the evolution of mAR. We have gathered more than 400 mAR applications from Android Market, and analyzed the offer as a whole, taking into account some technology aspects, pricing schemes and user adoption factors. Results show, for example, that application providers are not expecting to generate revenues per direct download, although they are producing high-quality applications, well rated by the users.
Resumo:
Este trabajo de investigación tiene como objetivo esencial ofrecer una solución de accesibilidad a los dispositivos móviles táctiles para personas con discapacidad física con afección en los miembros superiores. El diseño, desarrollo y validación de la solución detallada está basado en una plataforma abierta y de bajo coste como Android que, mediante la interconexión de conmutadores comerciales y el uso de un sistema de barrido con realimentación por voz sintetizada, permite al usuario acceder a todas las funciones básicas de la telefonía móvil. El análisis de los requisitos de usuario es un eje central de este trabajo para lo cual se ha contado con la participación de la Asociación de Lesionados Medulares y Grandes Discapacitados Físicos (ASPAYM), de la Asociación de Padres de Alumnos Minusválidos (APAM) y del Centro de Referencia Estatal de Atención al Daño Cerebral (CEADAC). El sistema resultante preserva las expectativas de autonomía personal y privacidad demandadas.
Resumo:
En las últimas décadas se han producido importantes avances tecnológicos, lo que ha producido un crecimiento importante de las Redes Inalámbricas de Sensores (RIS), conocidas en inglés como Wireless Sensor Networks (WSN). Estas redes están formadas por un conjunto de pequeños nodos o también, conocidos como motas, compuestos por diversos tipos de sensores. Las Redes Inalámbricas de Sensores pueden resultar muy útiles en entornos donde el despliegue de redes cableadas, formadas por ordenadores, encaminadores u otros dispositivos de red no sea posible. Sin embargo, este tipo de redes presentan una serie de carencias o problemas que dificultan, en ocasiones, su implementación y despliegue. Este Proyecto Fin de Carrera tiene como principales objetivos: diseñar e implementar un agente que haga uso de la tecnología Bluetooth para que se pueda comunicar tanto con la arquitectura orientada a servicios, vía radio, como con el módulo Bioharness para obtener parámetros fisiológicos; ofrecer una serie de servicios simples a la Red Inalámbrica de Sensores; diseñar un algoritmo para un sistema de alarmas; realizar e implementar una pasarela entre protocolos que usen el estándar IEEE802.15.4 (ZigBee) y el estándar IEEE802.15.1 de la Tecnología Bluetooth. Por último, implementar una aplicación Android para el reloj WiMM y que este pueda recibir alarmas en tiempo real a través del la Interfaz Bluetooth. Para lograr estos objetivos, en primer lugar realizaremos un estudio del Estado del Arte de las Redes Inalámbricas de Sensores, con el fin de estudiar su arquitectura, el estándar Bluetooth y los dispositivos Bluetooth que se han utilizado en este Proyecto. Seguidamente, describiremos detalladamente el firmware iWRAP versión 4, centrándonos en sus modos de operación, comandos AT y posibles errores que puedan ocurrir. A continuación, se describirá la arquitectura y la especificación nSOM, para adentrarnos en la arquitectura orientada a servicios. Por último, ejecutaremos la fase de validación del sistema y se analizarán los resultados obtenidos durante la fase de pruebas. ABSTRACT In last decades there have been significant advances in technology, which has resulted in important growth of Wireless Sensor Networks (WSN). These networks consist of a small set of nodes, also known as spots; equipped with various types of sensors. Wireless Sensor Networks can be very useful in environments where deployment of wired networks, formed by computers, routers or other network devices is not possible. However, these networks have a number of shortcomings or challenges to, sometimes, their implementation and deployment. The main objectives of this Final Project are to design and implement an agent that makes use of Bluetooth technology so you can communicate with both the service-oriented architecture, via radio, as with Bioharness module for physiological parameters; offer simple services to Wireless Sensor Network, designing an algorithm for an alarm system, make and implement a gateway between protocols using the standard IEEE802.15.4 (ZigBee) and IEEE802.15.1 standard Bluetooth Technology. Finally, implement an Android application for WiMM watch that can receive real-time alerts through the Bluetooth interface. In order to achieve these objectives, firstly we are going to carry out a study of the State of the Art in Wireless Sensor Network, where we study the architecture, the Bluetooth standard and Bluetooth devices that have been used in this project. Then, we will describe in detail the iWRAP firmware version 4, focusing on their operation modes, AT commands and errors that may occur. Therefore, we will describe the architecture and specification nSOM, to enter into the service-oriented architecture. Finally, we will execute the phase of validation of the system in a real application scenario, analyzing the results obtained during the testing phase.
Resumo:
Los sensores inerciales (acelerómetros y giróscopos) se han ido introduciendo poco a poco en dispositivos que usamos en nuestra vida diaria gracias a su minituarización. Hoy en día todos los smartphones contienen como mínimo un acelerómetro y un magnetómetro, siendo complementados en losmás modernos por giróscopos y barómetros. Esto, unido a la proliferación de los smartphones ha hecho viable el diseño de sistemas basados en las medidas de sensores que el usuario lleva colocados en alguna parte del cuerpo (que en un futuro estarán contenidos en tejidos inteligentes) o los integrados en su móvil. El papel de estos sensores se ha convertido en fundamental para el desarrollo de aplicaciones contextuales y de inteligencia ambiental. Algunos ejemplos son el control de los ejercicios de rehabilitación o la oferta de información referente al sitio turístico que se está visitando. El trabajo de esta tesis contribuye a explorar las posibilidades que ofrecen los sensores inerciales para el apoyo a la detección de actividad y la mejora de la precisión de servicios de localización para peatones. En lo referente al reconocimiento de la actividad que desarrolla un usuario, se ha explorado el uso de los sensores integrados en los dispositivos móviles de última generación (luz y proximidad, acelerómetro, giróscopo y magnetómetro). Las actividades objetivo son conocidas como ‘atómicas’ (andar a distintas velocidades, estar de pie, correr, estar sentado), esto es, actividades que constituyen unidades de actividades más complejas como pueden ser lavar los platos o ir al trabajo. De este modo, se usan algoritmos de clasificación sencillos que puedan ser integrados en un móvil como el Naïve Bayes, Tablas y Árboles de Decisión. Además, se pretende igualmente detectar la posición en la que el usuario lleva el móvil, no sólo con el objetivo de utilizar esa información para elegir un clasificador entrenado sólo con datos recogidos en la posición correspondiente (estrategia que mejora los resultados de estimación de la actividad), sino también para la generación de un evento que puede producir la ejecución de una acción. Finalmente, el trabajo incluye un análisis de las prestaciones de la clasificación variando el tipo de parámetros y el número de sensores usados y teniendo en cuenta no sólo la precisión de la clasificación sino también la carga computacional. Por otra parte, se ha propuesto un algoritmo basado en la cuenta de pasos utilizando informaiii ción proveniente de un acelerómetro colocado en el pie del usuario. El objetivo final es detectar la actividad que el usuario está haciendo junto con la estimación aproximada de la distancia recorrida. El algoritmo de cuenta pasos se basa en la detección de máximos y mínimos usando ventanas temporales y umbrales sin requerir información específica del usuario. El ámbito de seguimiento de peatones en interiores es interesante por la falta de un estándar de localización en este tipo de entornos. Se ha diseñado un filtro extendido de Kalman centralizado y ligeramente acoplado para fusionar la información medida por un acelerómetro colocado en el pie del usuario con medidas de posición. Se han aplicado también diferentes técnicas de corrección de errores como las de velocidad cero que se basan en la detección de los instantes en los que el pie está apoyado en el suelo. Los resultados han sido obtenidos en entornos interiores usando las posiciones estimadas por un sistema de triangulación basado en la medida de la potencia recibida (RSS) y GPS en exteriores. Finalmente, se han implementado algunas aplicaciones que prueban la utilidad del trabajo desarrollado. En primer lugar se ha considerado una aplicación de monitorización de actividad que proporciona al usuario información sobre el nivel de actividad que realiza durante un período de tiempo. El objetivo final es favorecer el cambio de comportamientos sedentarios, consiguiendo hábitos saludables. Se han desarrollado dos versiones de esta aplicación. En el primer caso se ha integrado el algoritmo de cuenta pasos en una plataforma OSGi móvil adquiriendo los datos de un acelerómetro Bluetooth colocado en el pie. En el segundo caso se ha creado la misma aplicación utilizando las implementaciones de los clasificadores en un dispositivo Android. Por otro lado, se ha planteado el diseño de una aplicación para la creación automática de un diario de viaje a partir de la detección de eventos importantes. Esta aplicación toma como entrada la información procedente de la estimación de actividad y de localización además de información almacenada en bases de datos abiertas (fotos, información sobre sitios) e información sobre sensores reales y virtuales (agenda, cámara, etc.) del móvil. Abstract Inertial sensors (accelerometers and gyroscopes) have been gradually embedded in the devices that people use in their daily lives thanks to their miniaturization. Nowadays all smartphones have at least one embedded magnetometer and accelerometer, containing the most upto- date ones gyroscopes and barometers. This issue, together with the fact that the penetration of smartphones is growing steadily, has made possible the design of systems that rely on the information gathered by wearable sensors (in the future contained in smart textiles) or inertial sensors embedded in a smartphone. The role of these sensors has become key to the development of context-aware and ambient intelligent applications. Some examples are the performance of rehabilitation exercises, the provision of information related to the place that the user is visiting or the interaction with objects by gesture recognition. The work of this thesis contributes to explore to which extent this kind of sensors can be useful to support activity recognition and pedestrian tracking, which have been proven to be essential for these applications. Regarding the recognition of the activity that a user performs, the use of sensors embedded in a smartphone (proximity and light sensors, gyroscopes, magnetometers and accelerometers) has been explored. The activities that are detected belong to the group of the ones known as ‘atomic’ activities (e.g. walking at different paces, running, standing), that is, activities or movements that are part of more complex activities such as doing the dishes or commuting. Simple, wellknown classifiers that can run embedded in a smartphone have been tested, such as Naïve Bayes, Decision Tables and Trees. In addition to this, another aim is to estimate the on-body position in which the user is carrying the mobile phone. The objective is not only to choose a classifier that has been trained with the corresponding data in order to enhance the classification but also to start actions. Finally, the performance of the different classifiers is analysed, taking into consideration different features and number of sensors. The computational and memory load of the classifiers is also measured. On the other hand, an algorithm based on step counting has been proposed. The acceleration information is provided by an accelerometer placed on the foot. The aim is to detect the activity that the user is performing together with the estimation of the distance covered. The step counting strategy is based on detecting minima and its corresponding maxima. Although the counting strategy is not innovative (it includes time windows and amplitude thresholds to prevent under or overestimation) no user-specific information is required. The field of pedestrian tracking is crucial due to the lack of a localization standard for this kind of environments. A loosely-coupled centralized Extended Kalman Filter has been proposed to perform the fusion of inertial and position measurements. Zero velocity updates have been applied whenever the foot is detected to be placed on the ground. The results have been obtained in indoor environments using a triangulation algorithm based on RSS measurements and GPS outdoors. Finally, some applications have been designed to test the usefulness of the work. The first one is called the ‘Activity Monitor’ whose aim is to prevent sedentary behaviours and to modify habits to achieve desired objectives of activity level. Two different versions of the application have been implemented. The first one uses the activity estimation based on the step counting algorithm, which has been integrated in an OSGi mobile framework acquiring the data from a Bluetooth accelerometer placed on the foot of the individual. The second one uses activity classifiers embedded in an Android smartphone. On the other hand, the design of a ‘Travel Logbook’ has been planned. The input of this application is the information provided by the activity and localization modules, external databases (e.g. pictures, points of interest, weather) and mobile embedded and virtual sensors (agenda, camera, etc.). The aim is to detect important events in the journey and gather the information necessary to store it as a journal page.
Resumo:
Mobile activity recognition focuses on inferring the current activities of a mobile user by leveraging the sensory data that is available on today’s smart phones. The state of the art in mobile activity recognition uses traditional classification learning techniques. Thus, the learning process typically involves: i) collection of labelled sensory data that is transferred and collated in a centralised repository; ii) model building where the classification model is trained and tested using the collected data; iii) a model deployment stage where the learnt model is deployed on-board a mobile device for identifying activities based on new sensory data. In this paper, we demonstrate the Mobile Activity Recognition System (MARS) where for the first time the model is built and continuously updated on-board the mobile device itself using data stream mining. The advantages of the on-board approach are that it allows model personalisation and increased privacy as the data is not sent to any external site. Furthermore, when the user or its activity profile changes MARS enables promptly adaptation. MARS has been implemented on the Android platform to demonstrate that it can achieve accurate mobile activity recognition. Moreover, we can show in practise that MARS quickly adapts to user profile changes while at the same time being scalable and efficient in terms of consumption of the device resources.
Resumo:
The Internet of Things (IoT) is growing at a fast pace with new devices getting connected all the time. A new emerging group of these devices are the wearable devices, and Wireless Sensor Networks are a good way to integrate them in the IoT concept and bring new experiences to the daily life activities. In this paper we present an everyday life application involving a WSN as the base of a novel context-awareness sports scenario where physiological parameters are measured and sent to the WSN by wearable devices. Applications with several hardware components introduce the problem of heterogeneity in the network. In order to integrate different hardware platforms and to introduce a service-oriented semantic middleware solution into a single application, we propose the use of an Enterprise Service Bus (ESB) as a bridge for guaranteeing interoperability and integration of the different environments, thus introducing a semantic added value needed in the world of IoT-based systems. This approach places all the data acquired (e.g., via Internet data access) at application developers disposal, opening the system to new user applications. The user can then access the data through a wide variety of devices (smartphones, tablets, computers) and Operating Systems (Android, iOS, Windows, Linux, etc.).
Resumo:
El planteamiento inicial era proveer al individuo invidente de un sistema autónomo capaz de guiarle según sus preferencias. El resultado obtenido al finalizar este proyecto ha sido un dispositivo autónomo configurable por el usuario mediante una aplicación sw , desarrollada en la plataforma móvil Android capaz de comunicarse con el dispositivo autónomo(móvil personal). La idea de utilizar como plataforma de desarrollo sw Android, se basó fundamentalmente en que es código open source, es gratuito y está presente en el 70 por ciento de los móviles de Europa. La idea inicial era que ambos hubieran sido integrados en un mismo dispositivo, pero una vez comenzado el proyecto y habiendo evaluado los hábitos actuales, decidimos adaptar la idea general del proyecto, a nuestros días. Para ello hicimos uso del dispositivo móvil más usado hoy en día, como es nuestros teléfonos móviles, o más bien los llamado Smartphone, con los cuales podemos desde su aplicación originaria que es llamar, hasta realizar multitud de operaciones al mismo tiempo como puede ser comunicación por internet, posicionamiento via GPS, intercambio de ficheros por bluetooth… tantas como podamos programar. Sobre este último atributo, intercambio de información a través de bluetooth, es la interfaz que vamos a aprovechar para la realización de nuestro proyecto. Hoy en día el 90% de los Smartphone tiene entre sus características de conectividad la posibilidad de intercambiar información vía bluetooth. Una vez se tiene resuelto el interfaz entre el medio y el usuario se debe solucionar la forma de transformar la información para que los dispositivos móviles recojan la información y sepan discernir entre la información importante y la que no lo es. Para ello hemos desarrollado una tarjeta configurable, con un módulo bluetooth comercial para enviar la información. El resultado final de esta tarjeta proporciona una manera fácil de configurar diferentes mensajes que serán utilizados según la situación. ABSTRACT The initial approach consisted of a system that shows the way for blind people to get somewhere or something or provide to them important information, an autonomous system able to guide to their preference. After several analyses the project accomplish is a standalone device configurable by the user via an application sw, developed in Android mobile platform capable of communicating with the standalone device (personal cell phone). The decision of using the sw development platform of Android was due to the open source code concept and the great extent of presence on 70 percent of European mobiles. The first idea was that the sw and the device were integrated into a single device, but once the project had been started and having assessed the current habits, it has changed to be adapted to the present technology to get a better usability on the present-day. To achieve the project goals the most used mobile device today was used, our mobile phones, or rather called Smartphone, which you could use to phone your mother or perform many operations simultaneously such as communication online, positioning via GPS, bluetooth file trading program, etc. On this last attribute, information sharing via bluetooth, is the interface that it has been taken to complete the project. Today 90% of the Smartphone include in its connectivity features the ability to exchange information via bluetooth. Once that it was solved the interface between the environment and the final user, the next step incorporates the transformation of the information that the mobile devices collect from the environment to discern between the information the user configure to be notified or not. The hardware device that makes it possible is a configurable card with a bluetooth module that is able to send the information. The final result of this card provides an easy way to configure different messages, that we could use depending of the situation.
Resumo:
El propósito de este proyecto de fin de Grado es el estudio y desarrollo de una aplicación basada en Android que proporcionará soporte y atención a los servicios de transporte público existentes en Cracovia, Polonia. La principal funcionalidad del sistema será consultar la posición de un determinado autobús o tranvía y mostrar su ubicación con exactitud. Para lograr esto, necesitaremos tres fases de desarrollo. En primer lugar, deberemos implementar un sistema que obtenga las coordenadas geográficas de los vehículos de transporte público en cada instante. A continuación, tendremos que registrar todos estos datos y almacenarlos en una base de datos en un servidor web. Por último, desarrollaremos un sistema cliente que realice consultas a tiempo real sobre estos datos almacenados, obteniendo la posición para una línea determinada y mostrando su ubicación con un marcador en el mapa. Para hacer el seguimiento de los vehículos, sería necesario tener acceso a una API pública que nos proporcionase la posición registrada por los GPS que integran cada uno de ellos. Como esta API no existe actualmente para los servicios de autobús, y para los tranvías es de uso meramente privado, desarrollaremos una segunda aplicación en Android que hará las funciones del lado servidor. En ella podremos elegir mediante una simple interfaz el número de línea y un código específico que identificará a cada vehículo en particular (e.g. podemos tener 6 tranvías recorriendo la red al mismo tiempo para la línea 24). Esta aplicación obtendrá las coordenadas geográficas del teléfono móvil, lo cual incluye latitud, longitud y orientación a través del proveedor GPS. De este modo, podremos realizar una simulación de como el sistema funcionará a tiempo real utilizando la aplicación servidora desde dentro de un tranvía o autobús y, al mismo tiempo, utilizando la aplicación cliente haciendo peticiones para mostrar la información de dicho tranvía. El cliente, además, podrá consultar la ruta de cualquier línea sin necesidad de tener acceso a Internet. Almacenaremos las rutas y paradas de cada línea en la memoria del teléfono móvil utilizando ficheros XML debido al poco espacio que ocupan y a lo útil que resulta poder consultar un trayecto en cualquier momento, independientemente del acceso a la red. El usuario también podrá consultar las tablas de horarios oficiales para cada línea. Aunque en este caso si será necesaria una conexión a Internet debido a que se realizará a través de la web oficial de MPK. Para almacenar todas las coordenadas de cada vehículo en cada instante necesitaremos crear una base de datos en un servidor. Esto se resolverá mediante el uso de MYSQL y PHP. Se enviarán peticiones de tipo GET y POST a los servicios PHP que se encargarán de traducir y realizar la consulta correspondiente a la base de datos MYSQL. Por último, gracias a todos los datos recogidos relativos a la posición de los vehículos de transporte público, podremos realizar algunas tareas de análisis. Comparando la hora exacta a la que los vehículos pasaron por cada parada y la hora a la que deberían haber pasado según los horarios oficiales, podremos descubrir fallos en estos. Seremos capaces de determinar si es un error puntual debido a factores externos (atascos, averías,…) o si por el contrario, es algo que ocurre muy a menudo y se debería corregir el horario oficial. ABSTRACT The aim of this final Project (for University) is to develop an Android application thatwill provide support and feedback to the public transport services in Krakow. The main functionality of the system will be to track the position of a desired bus or tram line, and display its position on the map. To achieve this, we will need 3 stages: the first one will be to implement a system that sends the geographical position of the public transport vehicles, the second one will be to collect this data in a web server, and the last one will be to get the last location registered for the desired line and display it on the map. For tracking the vehicles, we would need to have access to a public API that should be connected with each bus/tram GPS. As this doesn’t exist in Krakow or at least is not available for public use, we will develop a second android application that will do the server side job. We will be able to choose in a simple interface the line number and a code letter to identify each vehicle (e.g. we can have 6 trams that belong to the line number 24 working at the same time). It will take the current mobile geolocation; this includes getting latitude, longitude and bearing from the GPS provider. Thus, we will be able to make a simulation of how the system works in real time by using the server app inside a tram and at the same time, using the client app and making requests to display the information of that tram. The client will also be able to check the path of the desired line without internet access. We will store the path and stops for each line locally in the phone memory using xml files due to the few requirements of available space it needs and the usefulness of checking a path when needed. This app will also offer the functionality of checking the timetable for the line, but in this case, it will link to the official Mpk website, so Internet access will be required. For storing all the coordinates for each vehicle at every moment we will need to create a database on a server. We have decided that the easiest way is to use Mysql and PHP for the deployment of the service. We will send GET and POST requests to the php files and those files will make the according queries to our database. Finally, based on all the collected data, we will be able to get some information about errors in the system of public transport timetables. We will check at what time a line was in each specific stop and compare it with the official timetable to find mistakes of time. We will determine if it is something that happens occasionally and related to external factors (e.g. traffic jams, breakdowns…) or if on the other hand, it is something that happens very often and the public transport timetables should be looked over and corrected.