27 resultados para Analog electronic systems -- Design
Resumo:
Although there has been a lot of interest in recognizing and understanding air traffic control (ATC) speech, none of the published works have obtained detailed field data results. We have developed a system able to identify the language spoken and recognize and understand sentences in both Spanish and English. We also present field results for several in-tower controller positions. To the best of our knowledge, this is the first time that field ATC speech (not simulated) is captured, processed, and analyzed. The use of stochastic grammars allows variations in the standard phraseology that appear in field data. The robust understanding algorithm developed has 95% concept accuracy from ATC text input. It also allows changes in the presentation order of the concepts and the correction of errors created by the speech recognition engine improving it by 17% and 25%, respectively, absolute in the percentage of fully correctly understood sentences for English and Spanish in relation to the percentages of fully correctly recognized sentences. The analysis of errors due to the spontaneity of the speech and its comparison to read speech is also carried out. A 96% word accuracy for read speech is reduced to 86% word accuracy for field ATC data for Spanish for the "clearances" task confirming that field data is needed to estimate the performance of a system. A literature review and a critical discussion on the possibilities of speech recognition and understanding technology applied to ATC speech are also given.
Resumo:
This paper deals with the detection and tracking of an unknown number of targets using a Bayesian hierarchical model with target labels. To approximate the posterior probability density function, we develop a two-layer particle filter. One deals with track initiation, and the other with track maintenance. In addition, the parallel partition method is proposed to sample the states of the surviving targets.
Resumo:
An analytical method for evaluating the uncertainty of the performance of active antenna arrays in the whole spatial spectrum is presented. Since array processing algorithms based on spatial reference are widely used to track moving targets, it is essential to be aware of the impact of the uncertainty sources on the antenna response. Furthermore, the estimation of the direction of arrival (DOA) depends on the array uncertainty. The aim of the uncertainties analysis is to provide an exhaustive characterization of the behavior of the active antenna array associated with its main uncertainty sources. The result of this analysis helps to select the proper calibration technique to be implemented. An illustrative example for a triangular antenna array used for satellite tracking is presented showing the suitability of the proposed method to carry out an efficient characterization of an active antenna array.
Resumo:
High flux and high CRI may be achieved by combining different chips and/or phosphors. This, however, results in inhomogeneous sources that, when combined with collimating optics, typically produce patterns with undesired artifacts. These may be a combination of spatial, angular or color non-uniformities. In order to avoid these effects, there is a need to mix the light source, both spatially and angularly. Diffusers can achieve this effect, but they also increase the etendue (and reduce the brightness) of the resulting source, leading to optical systems of increased size and wider emission angles. The shell mixer is an optic comprised of many lenses on a shell covering the source. These lenses perform Kohler integration to mix the emitted light, both spatially and angularly. Placing it on top of a multi-chip Lambertian light source, the result is a highly homogeneous virtual source (i.e, spatially and angularly mixed), also Lambertian, which is located in the same position with essentially the same size (so the average brightness is not increased). This virtual light source can then be collimated using another optic, resulting in a homogeneous pattern without color separation. Experimental measurements have shown optical efficiency of the shell of 94%, and highly homogeneous angular intensity distribution of collimated beams, in good agreement with the ray-tracing simulations.
Resumo:
Two quasi-aplanatic free-form solid V-groove collimators are presented in this work. Both optical designs are originally designed using the Simultaneous Multiple Surface method in three dimensions (SMS 3D). The second optically active surface in both free-form V-groove devices is designed a posteriori as a grooved surface. First two mirror (XX) design is designed in order to clearly show the design procedure and working principle of these devices. Second, RXI free-form design is comparable with existing RXI collimators; it is a compact and highly efficient design made of polycarbonate (PC) performing very good colour mixing of the RGGB LED sources placed off-axis. There have been presented rotationally symmetric non-aplanatic high efficiency collimators with colour mixing property to be improved and rotationally symmetric aplanatic devices with good colour mixing property and efficiency to be improved. The aim of this work was to design a free-form device in order to improve colour mixing property of the rotationally symmetric nonaplanatic RXI devices and the efficiency of the aplanatic ones.
Resumo:
The previous publications (Miñano et al, 2011) have shown that using a Spherical Geodesic Waveguide (SGW), it can be achieved the super-resolution up to ? /500 close to a set of discrete frequencies. These frequencies are directly connected with the well-known Schumann resonance frequencies of spherical symmetric systems. However, the Spherical Geodesic Waveguide (SGW) has been presented as an ideal system, in which the technological obstacles or manufacturing feasibility and their influence on final results were not taken into account. In order to prove the concept of superresolution experimentally, the Spherical Geodesic Waveguide is modified according to the manufacturing requirements and technological limitations. Each manufacturing process imposes some imperfections which can affect the experimental results. Here, we analyze the influence of the manufacturing limitations on the super-resolution properties of the SGW. Beside the theoretical work, herein, there has been presented the experimental results, as well.
Resumo:
In this work, novel imaging designs with a single optical surface (either refractive or reflective) are presented. In some of these designs, both object and image shapes are given but mapping from object to image is obtained as a result of the design. In other designs, not only the mapping is obtained in the design process, but also the shape of the object is found. In the examples considered, the image is virtual and located at infinity and is seen from known pupil, which can emulate a human eye. In the first introductory part, 2D designs have been done using three different design methods: a SMS design, a compound Cartesian oval surface, and a differential equation method for the limit case of small pupil. At the point-size pupil limit, it is proven that these three methods coincide. In the second part, previous 2D designs are extended to 3D by rotation and the astigmatism of the image has been studied. As an advanced variation, the differential equation method is used to provide the freedom to control the tangential rays and sagittal rays simultaneously. As a result, designs without astigmatism (at the small pupil limit) on a curved object surface have been obtained. Finally, this anastigmatic differential equation method has been extended to 3D for the general case, in which freeform surfaces are designed.
Resumo:
Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit. This optical system transmits the electromagnetic fields, emitted by an object plane, towards an image plane producing the same field distribution in both planes. In particular, a Dirac delta electric field in the object plane is focused without diffraction limit to the Dirac delta electric field in the image plane. Two devices with positive refraction, the Maxwell Fish Eye lens (MFE) and the Spherical Geodesic Waveguide (SGW) have been claimed to break the diffraction limit using positive refraction with a different meaning. In these cases, it has been considered the power transmission from a point source to a point receptor, which falls drastically when the receptor is displaced from the focus by a distance much smaller than the wavelength. Although these systems can detect displacements up to ?/3000, they cannot be compared to the NRL, since the concept of image is different. The SGW deals only with point source and drain, while in the case of the NRL, there is an object and an image surface. Here, it is presented an analysis of the SGW with defined object and image surfaces (both are conical surfaces), similarly as in the case of the NRL. The results show that a Dirac delta electric field on the object surface produces an image below the diffraction limit on the image surface.
Resumo:
Aplanatic designs present great interest in the optics field since they are free from spherical aberration and linear coma at the axial direction. Nevertheless nowadays it cannot be found on literature any thin aplanatic design based on a lens. This work presents the first aplanatic thin lens (in this case a dome-shaped faceted TIR lens performing light collimation), designed for LED illumination applications. This device, due to its TIR structure (defined as an anomalous microstructure as we will see) presents good color-mixing properties. We will show this by means of raytrace simulations, as well as high optical efficiency.
Resumo:
LEDs are substituting fluorescent and incandescent bulbs as illumination sources due to their low power consumption and long lifetime. Visible Light Communications (VLC) makes use of the LEDs short switching times to transmit information. Although LEDs switching speed is around Mbps range, higher speeds (hundred of Mbps) can be reached by using high bandwidth-efficiency modulation techniques. However, the use of these techniques requires a more complex driver which elevates drastically its power consumption. In this work an energy efficiency analysis of the different VLC modulation techniques and drivers is presented. Besides, the design of new schemes of VLC drivers is described.
Resumo:
Several boost-derived topologies are analyzed and compared for an aerospace application that uses a 100 V voltage bus. All these topologies have been designed and optimized considering the electrical requirements and the reduced number of space-qualified components. The comparison evaluates the power losses, mass, and dynamic response. Special attention has been paid to those topologies that may cancel the inherent right half plane zero (RHP) zero of the boost topology. Experimental results of the less common topologies are presented.
Resumo:
Como punto de partida para el desarrollo de la Tesis, se mantiene la hipótesis de que es posible establecer métodos de evaluación global sobre el grado de utilidad de los sistemas constructivos correspondientes a los cerramientos de la edificación. Tales métodos habrían de posibilitar, de entre una serie finita de sistemas alternativos, cuáles de ellos son los objetivamente más adecuados para su selección en un entorno de decisión concreto, y habrían de permitir fundamentar la justificación objetiva de tal decisión. Paralelamente a esta hipótesis de carácter general, se planteó desde el inicio la necesidad de comprobación de una hipótesis de partida particular según la cual los sistemas constructivos basados en la utilización de componentes prefabricados, o procesos de puesta en obra con un alto grado de industrialización arrojarían valores de utilidad mayores que los sistemas tradicionales basados en la albañilería. Para la verificación de estas dos hipótesis de partida se ha procedido inicialmente a la selección de un conjunto coherente de doce sistemas de cerramientos de la edificación que pudiese servir como testigo de su diversidad potencial, para proceder a su valoración comparativa. El método de valoración propuesto ha entrado a considerar una serie de factores de diversa índole que no son reducibles a un único parámetro o magnitud que permitiese una valoración de tipo lineal sobre su idoneidad relativa, ni que permitiese establecer un grado de prelación entre los distintos sistemas constructivos alternativos de manera absoluta. Para resolver este tour de force o desafío metodológico se ha acudido a la aplicación de metodologías de valoración que nos permitiesen establecer de forma racional dicha comparativa. Nos referimos a una serie de metodologías provenientes en primera instancia de las ciencias exactas, que reciben la denominación de métodos de ayuda a la decisión multicriterio, y en concreto el denominado método ELECTRE. Inicialmente, se ha planteado la aplicación del método de análisis sobre doce sistemas constructivos seleccionados de tal forma que representasen de forma adecuada las tres categorías establecidas para caracterizar la totalidad de sistemas constructivos posibles; por peso, grado de prefabricación y grado de ventilación. Si bien la combinación de las tres categorías básicas anteriormente señaladas produce un total de 18 subcategorías conceptuales, tomamos finalmente doce subcategorías dado que consideramos que es un número operativo suficiente por extenso para el análisis propuesto y elimina tipos no relevantes. Aplicado el método propuesto, a estos doce sistemas constructivos “testigo”, se constata el mayor grado de utilidad de los sistemas prefabricados, pesados y no ventilados. Al hilo del análisis realizado en la Parte II de la Tesis sobre los doce sistemas constructivos “testigo”, se ha realizado un volcado de los sistemas constructivos incluidos en el Catalogo de Elementos Constructivos del CTE (versión 2010) sobre las dieciocho subcategorías definidas en dicha Parte II para caracterizar los sistemas constructivos “testigo”. Posteriormente, se ha procedido a una parametrización de la totalidad de sistemas constructivos para cerramientos de fachadas incluidos en este Catálogo. La parametrización sistemática realizada ha permitido establecer, mediante el cálculo del valor medio que adoptan los parámetros de los sistemas pertenecientes a una misma familia de las establecidas por el Catálogo, una caracterización comparativa del grado de utilidad de dichas familias, tanto en lo relativo a cada uno de los parámetros como en una valoración global de sus valores, de carácter indicativo. Una vez realizada una parametrización completa de la totalidad de sistemas constructivos incluidos en el Catálogo, se ha realizado una simulación de aplicación de la metodología de validación desarrollada en la Parte II de la presente Tesis, con el objeto de comprobar su adecuación al caso. En conclusión, el desarrollo de una herramienta de apoyo a la decisión multicriterio aplicada al Catálogo de Elementos constructivos del CTE se ha demostrado técnicamente viable y arroja resultados significativos. Se han diseñado dos sistemas constructivos mediante la aplicación de la herramienta desarrollada, uno de fachada no ventilada y otro de fachada ventilada. Comparados estos dos sistemas constructivos mejorados con otros sistemas constructivos analizados Se comprueba el alto grado de utilidad objetiva de los dos sistemas diseñados en relación con el resto. La realización de este ejercicio de diseño de un sistema constructivo específico, que responde a los requerimientos de un decisor concreto viene a demostrar, así pues, la utilidad del algoritmo propuesto en su aplicación a los procesos de diseño de los sistemas constructivos. La tesis incorpora dos innovaciones metodológicas y tres innovaciones instrumentales. ABSTRACT The starting point for the thesis is the hypothesis that it is possible to devise suitability degree evaluation methods of building enclosure systems. Such methods should allow optimizing appraisal, given a specific domain of decision, among a finite number of alternative systems, and provide objective justification of such decision. Along with the above mentioned general assumption, a second hypothesis whereby constructive systems based on the use of prefabricated components, or high industrialization degree work processes, would throw efficiency values higher than traditional masonry systems needed to be tested. In order to validate these two hypothesis a coherent set of twelve enclosure systems that could serve as a reference sample of their potential diversity was selected and a comparative evaluation was carried out. The valuation method proposed has considered several different factors that are neither reducible to a single parameter or magnitude that would allow a linear evaluation of their relative suitability nor allow to establishing an absolute priority ranking between different alternative constructive systems. In order to resolve this tour de force or methodological challenge, valuation methodologies that enable use establishing rational assessments were used. We are referring to a number of methodologies taken from the exact sciences field, usually known as aid methods for multi-criteria decision, in particular the so-called ELECTRE method. Even though the combination of the mentioned three basic categories result in eighteen conceptual sub categories, we are finally considering just twelve since we deem it adequately extended for the our intended purpose and eliminates non relevant instances. The method of analysis was initially applied to the set of twelve selected constructive systems is a way that they could represent adequately the three previously established categories set out to characterize all possible enclosure systems, namely weight, prefabrication degree and ventilation degree. Once the proposed method is applied to the sample systems, the higher efficiency of the prefabricated, heavy and not ventilated systems was confirmed. In line with the analysis in Part II of the thesis on the twelve chosen enclosure systems, it has done an uploading data of construction systems listed in the Catalogue of constructive elements of the CTE (version 2010) according the eighteen subcategories used in this part II to characterize the construction systems taken as sample. Subsequently, a parameterization of all enclosure facade systems included in this catalog has been undertaken. The systematic parameterization has allowed to set, by means of calculating the average values of the parameters of the systems belonging to the same family of those established by the Catalog, a comparative characterization of the efficiency degree of these families, both in relation to each parameter as to an overall evaluation of its values, in a indicative way. After the parameterization of all enclosure systems included in the Catalog, a simulation of validation methodology application developed in Part II of this Thesis has been made, in order to assess its consistency to the referred case. In conclusion, the development of a multi-criteria decision aid tool, applied to the CTE Catalog of constructive elements, has proved to be technically feasible and yields significant results. Two building systems through the application of the developed tool, a non-ventilated façade and a ventilated façade have been designed. Comparing these two improved construction systems with other building systems analyzed, we were able to assess the high degree of objective efficiency of the two systems designed in relation to the rest. The exercise of designing a specific enclosure system that meets the requirements of a particular decision-maker hence shows the suitability of the proposed algorithm applied to the process of enclosure systems design. This Thesis includes two methodological innovations and three instrumental innovations.