49 resultados para Algoritmos computacionales
Resumo:
Este proyecto se enmarca dentro de la Computación Simbólica y de los fundamentos matemáticos del Diseño Geométrico Asistido por ordenador (CAGD). Se abordara uno de los problemas principales en el ámbito del CAGD y que es la manipulación de las Curvas Concoide. La importancia del avance en la manipulación de las curvas concoide radica en el papel fundamental que desempeñan en múltiples aplicaciones en la actualidad dentro de campos de diversa índole tales como la medicina, la óptica, el electromagnetismo, la construcción, etc. El objetivo principal de este proyecto es el diseño e implementación de algoritmos para el estudio, cálculo y manipulación de curvas concoides, utilizando técnicas propias del Calculo Simbólico. Esta implementación se ha programado utilizando el sistema de computación simbólica Maple. El proyecto consiste en dos partes bien diferenciadas, una parte teórica y otra más practica. La primera incluye la descripción geométrica y definición formal de curvas concoide, así como las ideas y propiedades básicas. De forma más precisa, se presenta un estudio matemático sobre el análisis de racionalidad de estas curvas, explicando los algoritmos que serán implementados en las segunda parte, y que constituye el objetivo principal de este proyecto. Para cerrar esta parte, se presenta una pequeña introducción al sistema y a la programación en Maple. Por otro lado, la segunda parte de este proyecto es totalmente original, y en ella el autor desarrolla las implementaciones en Maple de los algoritmos presentados en la parte anterior, así como la creación de un paquete Maple que las recoge. Por último, se crean las paginas de ayudas en el sistema Maple para la correcta utilización del paquete matemático anteriormente mencionado. Una vez terminada la parte de implementación, se aplican los algoritmos implementados a una colección de curvas clásicas conocidas, recogiendo los datos y resultados obtenidos en un atlas de curvas. Finalmente, se presenta una recopilación de las aplicaciones más destacadas en las que las concoides desempeñan un papel importante así como una breve reseña sobre las concoides de superficies, objeto de varios estudios en la actualidad y a los que se considera que el presente proyecto les puede resultar de gran utilidad. Abstract This project is set up in the framework of Symbolic Computation as well as in the implementation of algebraic-geometric problems that arise from Computer Aided Geometric Design (C.A.G.D.) applications. We address problems related to conchoid curves. The importance of these curves is the fundamental role that they play in current applications as medicine, optics, electromagnetism, construction, etc. The main goal of this project is to design and implement some algorithms to solve problems in studying, calculating and generating conchoid curves with symbolic computation techniques. For this purpose, we program our implementations in the symbolic system “Maple". The project consists of two differentiated parts, one more theoretical part and another part more practical. The first one includes the description of conchoid curves as well as the basic ideas about the concept and its basic properties. More precisely, we introduce in this part the mathematical analysis of the rationality of the conchoids, and we present the algorithms that will be implemented. Furthermore, the reader will be brie y introduced in Maple programming. On the other hand, the second part of this project is totally original. In this more practical part, the author presents the implemented algorithms and a Maple package that includes them, as well as their help pages. These implemented procedures will be check and illustrated with some classical and well known curves, collecting the main properties of the conchoid curves obtained in a brief atlas. Finally, a compilation of the most important applications where conchoids play a fundamental role, and a brief introduction to the conchoids of surfaces, subject of several studies today and where this project could be very useful, are presented.
Resumo:
Este trabajo propone una serie de algoritmos con el objetivo de extraer información de conjuntos de datos con redes de neuronas. Se estudian dichos algoritmos con redes de neuronas Enhenced Neural Networks (ENN), debido a que esta arquitectura tiene algunas ventajas cuando se aproximan funciones mediante redes neuronales. En la red ENN los pesos de la matriz principal varián con cada patrón, por lo que se comete un error menor en la aproximación. Las redes de neuronas ENN reúnen la información en los pesos de su red auxiliar, se propone un método para obtener información de la red a través de dichos pesos en formas de reglas y asignando un factor de certeza de dichas reglas. La red ENN obtiene un error cuadrático medio menor que el error teórico de una aproximación matemática por ejemplo mediante polinomios de Taylor. Se muestra como una red ENN, entrenada a partir un conjunto de patrones obtenido de una función de variables reales, sus pesos asociados tienen unas relaciones similares a las que se veri_can con las variables independientes con dicha función de variables reales. Las redes de neuronas ENN aproximan polinomios, se extrae conocimiento de un conjunto de datos de forma similar a la regresión estadística, resolviendo de forma más adecuada el problema de multicolionalidad en caso de existir. Las relaciones a partir de los pesos asociados de la matriz de la red auxiliar se obtienen similares a los coeficientes de una regresión para el mismo conjunto numérico. Una red ENN entrenada a partir de un conjunto de datos de una función boolena extrae el conocimiento a partir de los pesos asociados, y la influencia de las variables de la regla lógica de la función booleana, queda reejada en esos pesos asociados a la red auxiliar de la red ENN. Se plantea una red de base radial (RBF) para la clasificación y predicción en problemas forestales y agrícolas, obteniendo mejores resultados que con el modelo de regresión y otros métodos. Los resultados con una red RBF mejoran al método de regresión si existe colinealidad entre los datos que se dispone y no son muy numerosos. También se detecta que variables tienen más importancia en virtud de la variable pronóstico. Obteniendo el error cuadrático medio con redes RBF menor que con otros métodos, en particular que con el modelo de regresión. Abstract A series of algorithms is proposed in this study aiming at the goal of producing information about data groups with a neural network. These algorithms are studied with Enheced Neural Networks (ENN), owing to the fact that this structure shows sever advantages when the functions are approximated by neural networks. Main matrix weights in th ENN vary on each pattern; so, a smaller error is produced when approximating. The neural network ENN joins the weight information contained in their auxiliary network. Thus, a method to obtain information on the network through those weights is proposed by means of rules adding a certainty factor. The net ENN obtains a mean squared error smaller than the theorical one emerging from a mathematical aproximation such as, for example, by means of Taylor's polynomials. This study also shows how in a neural network ENN trained from a set of patterns obtained through a function of real variables, its associated weights have relationships similar to those ones tested by means of the independent variables connected with such functions of real variables. The neural network ENN approximates polynomials through it information about a set of data may be obtained in a similar way than through statistical regression, solving in this way possible problems of multicollinearity in a more suitable way. Relationships emerging from the associated weights in the auxiliary network matrix obtained are similar to the coeficients corresponding to a regression for the same numerical set. A net ENN trained from a boolean function data set obtains its information from its associated weights. The inuence of the variables of the boolean function logical rule are reected on those weights associated to the net auxiliar of the ENN. A radial basis neural networks (RBF) for the classification and prediction of forest and agricultural problems is proposed. This scheme obtains better results than the ones obtained by means of regression and other methods. The outputs with a net RBF better the regression method if the collineality with the available data and their amount is not very large. Detection of which variables are more important basing on the forecast variable can also be achieved, obtaining a mean squared error smaller that the ones obtained through other methods, in special the one produced by the regression pattern.
Resumo:
El desarrollo de algoritmos ensambladores de genes y la utilización de estos está viviendo un aumento muy espectacular en los últimos años. Debido a las mejoras ofrecidas en los dispositivos hardware de los numerosos supercomputadores que existen hoy en día se pueden realizar experimentos científicos de una manera más asequible que hace unos años. Este proyecto servirá como introducción en el complejo mundo de algoritmos científicos, más concretamente en algoritmos ensambladores de genomas. Veremos de primera mano cómo utilizar estas nuevas tecnologías, con ejemplos sencillos, pero con un desarrollo lo bastante importante para darnos una idea del funcionamiento de todas las fases de experimentación que engloban los algoritmos ensambladores y la utilización de la programación paralela en supercomputadores. Concretamente en este proyecto se van a analizar exhaustivamente una serie de algoritmos ensambladores que serán probados en uno de los supercomputadores más potentes de España, el Magerit 2. En estas pruebas vamos a proceder al ensamblado de genomas de tres tipos de organismos como bacterias (Staphylococcus Aureus, y Rhodobacter Sphaeroides) y una prueba gran escala con el genoma del Cromosoma 14 del Homo Sapiens Sapiens (Ser humano). Después procederemos a la comparación de todos los resultados obtenidos para poder comprobar que algoritmos realizan mejor su trabajo y ajustar dicha decisión a las necesidades que tenemos actualmente para buscar un algoritmo eficaz.
Resumo:
En las últimas décadas hemos visto un rápido desarrollo de las redes de telecomunicación llegando a todos los rincones de la sociedad, bien a través de cable o bien de forma inalámbrica. Dichas redes, que cada vez son más grandes, dinámicas y complejas, integrando un mayor número de servicios y protocolos, requieren de un componente central que es el enrutamiento. El enrutamiento determina las estrategias a utilizar por los nodos de una red para encontrar las rutas óptimas entre un origen y un destino en el envío de información. Resulta difícil conseguir una estrategia que se adapte a este tipo de entornos altamente dinámicos, complejos y con un alto grado de heterogeneidad. Los algoritmos clásicos propuestos hasta la fecha suelen ser algoritmos centralizados que tratan de gestionar una arquitectura claramente distribuida, que en escenarios estacionarios pueden mantener un buen rendimiento, pero que no funcionan bien en escenarios donde se dan continuos cambios en la topología de red o en los patrones de tráfico. Es necesario proponer nuevos algoritmos que permitan el enrutamiento de forma distribuida, más adaptables a los cambios, robustos y escalables. Aquí vamos a tratar de hacer una revisión de los algoritmos propuestos inspirados en la naturaleza, particularmente en los comportamientos colectivos de sociedades de insectos. Veremos cómo de una forma descentralizada y auto-organizada, mediante agentes simples e interacciones locales, podemos alcanzar un comportamiento global "inteligente" que cumpla dichas cualidades. Por último proponemos Abira, un algoritmo ACO basado en AntNet-FA que trata de mejorar el rendimiento y la convergencia introduciendo mecanismos de exploración, de feedback negativo como la penalización y de comunicación de de las mejores rutas. Tras realizar una simulación y comparar los resultados con el algoritmo original, vemos que Abira muestra un mejor rendimiento.
Resumo:
This paper describes the objectives, contents learning methodology and results of an on-line course about History of Algorithms for engineering students of the Polytechnic University of Madrid. This course is conducted in a virtual environment based on Moodle, with an educational model centered at student which includes a detailed planning of learning activities. . Our experience indicates that this subject is is highly motivating for students and the virtual environment facilitates competencies development.
Resumo:
En los diseños y desarrollos de ingeniería, antes de comenzar la construcción e implementación de los objetivos de un proyecto, es necesario realizar una serie de análisis previos y simulaciones que corroboren las expectativas de la hipótesis inicial, con el fin de obtener una referencia empírica que satisfaga las condiciones de trabajo o funcionamiento de los objetivos de dicho proyecto. A menudo, los resultados que satisfacen las características deseadas se obtienen mediante la iteración de métodos de ensayo y error. Generalmente, éstos métodos utilizan el mismo procedimiento de análisis con la variación de una serie de parámetros que permiten adaptar una tecnología a la finalidad deseada. Hoy en día se dispone de computadoras potentes, así como algoritmos de resolución matemática que permiten resolver de forma veloz y eficiente diferentes tipos de problemas de cálculo. Resulta interesante el desarrollo de aplicaciones que permiten la resolución de éstos problemas de forma rápida y precisa en el análisis y síntesis de soluciones de ingeniería, especialmente cuando se tratan expresiones similares con variaciones de constantes, dado que se pueden desarrollar instrucciones de resolución con la capacidad de inserción de parámetros que definan el problema. Además, mediante la implementación de un código de acuerdo a la base teórica de una tecnología, se puede lograr un código válido para el estudio de cualquier problema relacionado con dicha tecnología. El desarrollo del presente proyecto pretende implementar la primera fase del simulador de dispositivos ópticos Slabsim, en cual se puede representar la distribución de la energía de una onda electromagnética en frecuencias ópticas guiada a través de una una guía dieléctrica plana, también conocida como slab. Este simulador esta constituido por una interfaz gráfica generada con el entorno de desarrollo de interfaces gráficas de usuario Matlab GUIDE, propiedad de Mathworks©, de forma que su manejo resulte sencillo e intuitivo para la ejecución de simulaciones con un bajo conocimiento de la base teórica de este tipo de estructuras por parte del usuario. De este modo se logra que el ingeniero requiera menor intervalo de tiempo para encontrar una solución que satisfaga los requisitos de un proyecto relacionado con las guías dieléctricas planas, e incluso utilizarlo para una amplia diversidad de objetivos basados en esta tecnología. Uno de los principales objetivos de este proyecto es la resolución de la base teórica de las guías slab a partir de métodos numéricos computacionales, cuyos procedimientos son extrapolables a otros problemas matemáticos y ofrecen al autor una contundente base conceptual de los mismos. Por este motivo, las resoluciones de las ecuaciones diferenciales y características que constituyen los problemas de este tipo de estructuras se realizan por estos medios de cálculo en el núcleo de la aplicación, dado que en algunos casos, no existe la alternativa de uso de expresiones analíticas útiles. ABSTRACT. The first step in engineering design and development is an analysis and simulation process which will successfully corroborate the initial hypothesis that was made and find solutions for a particular. In this way, it is possible to obtain empirical evidence which suitably substantiate the purposes of the project. Commonly, the characteristics to reach a particular target are found through iterative trial and error methods. These kinds of methods are based on the same theoretical analysis but with a variation of some parameters, with the objective to adapt the results for a particular aim. At present, powerful computers and mathematical algorithms are available to solve different kinds of calculation problems in a fast and efficient way. Computing application development is useful as it gives a high level of accurate results for engineering analysis and synthesis in short periods of time. This is more notable in cases where the mathematical expressions on a theoretical base are similar but with small variations of constant values. This is due to the ease of adaptation of the computer programming code into a parameter request system that defines a particular solution on each execution. Additionally, it is possible to code an application suitable to simulate any issue related to the studied technology. The aim of the present project consists of the construction of the first stage of an optoelectronics simulator named Slabsim. Slabism is capable of representing the energetic distribution of a light wave guided in the volume of a slab waveguide. The mentioned simulator is made through the graphic user interface development environment Matlab GUIDE, property of Mathworks©. It is designed for an easy and intuitive management by the user to execute simulations with a low knowledge of the technology theoretical bases. With this software it is possible to achieve several aims related to the slab waveguides by the user in low interval of time. One of the main purposes of this project is the mathematical solving of theoretical bases of slab structures through computing numerical analysis. This is due to the capability of adapting its criterion to other mathematical issues and provides a strong knowledge of its process. Based on these advantages, numerical solving methods are used in the core of the simulator to obtain differential and characteristic equations results that become represented on it.
Resumo:
Los avances en el hardware permiten disponer de grandes volúmenes de datos, surgiendo aplicaciones que deben suministrar información en tiempo cuasi-real, la monitorización de pacientes, ej., el seguimiento sanitario de las conducciones de agua, etc. Las necesidades de estas aplicaciones hacen emerger el modelo de flujo de datos (data streaming) frente al modelo almacenar-para-despuésprocesar (store-then-process). Mientras que en el modelo store-then-process, los datos son almacenados para ser posteriormente consultados; en los sistemas de streaming, los datos son procesados a su llegada al sistema, produciendo respuestas continuas sin llegar a almacenarse. Esta nueva visión impone desafíos para el procesamiento de datos al vuelo: 1) las respuestas deben producirse de manera continua cada vez que nuevos datos llegan al sistema; 2) los datos son accedidos solo una vez y, generalmente, no son almacenados en su totalidad; y 3) el tiempo de procesamiento por dato para producir una respuesta debe ser bajo. Aunque existen dos modelos para el cómputo de respuestas continuas, el modelo evolutivo y el de ventana deslizante; éste segundo se ajusta mejor en ciertas aplicaciones al considerar únicamente los datos recibidos más recientemente, en lugar de todo el histórico de datos. En los últimos años, la minería de datos en streaming se ha centrado en el modelo evolutivo. Mientras que, en el modelo de ventana deslizante, el trabajo presentado es más reducido ya que estos algoritmos no sólo deben de ser incrementales si no que deben borrar la información que caduca por el deslizamiento de la ventana manteniendo los anteriores tres desafíos. Una de las tareas fundamentales en minería de datos es la búsqueda de agrupaciones donde, dado un conjunto de datos, el objetivo es encontrar grupos representativos, de manera que se tenga una descripción sintética del conjunto. Estas agrupaciones son fundamentales en aplicaciones como la detección de intrusos en la red o la segmentación de clientes en el marketing y la publicidad. Debido a las cantidades masivas de datos que deben procesarse en este tipo de aplicaciones (millones de eventos por segundo), las soluciones centralizadas puede ser incapaz de hacer frente a las restricciones de tiempo de procesamiento, por lo que deben recurrir a descartar datos durante los picos de carga. Para evitar esta perdida de datos, se impone el procesamiento distribuido de streams, en concreto, los algoritmos de agrupamiento deben ser adaptados para este tipo de entornos, en los que los datos están distribuidos. En streaming, la investigación no solo se centra en el diseño para tareas generales, como la agrupación, sino también en la búsqueda de nuevos enfoques que se adapten mejor a escenarios particulares. Como ejemplo, un mecanismo de agrupación ad-hoc resulta ser más adecuado para la defensa contra la denegación de servicio distribuida (Distributed Denial of Services, DDoS) que el problema tradicional de k-medias. En esta tesis se pretende contribuir en el problema agrupamiento en streaming tanto en entornos centralizados y distribuidos. Hemos diseñado un algoritmo centralizado de clustering mostrando las capacidades para descubrir agrupaciones de alta calidad en bajo tiempo frente a otras soluciones del estado del arte, en una amplia evaluación. Además, se ha trabajado sobre una estructura que reduce notablemente el espacio de memoria necesario, controlando, en todo momento, el error de los cómputos. Nuestro trabajo también proporciona dos protocolos de distribución del cómputo de agrupaciones. Se han analizado dos características fundamentales: el impacto sobre la calidad del clustering al realizar el cómputo distribuido y las condiciones necesarias para la reducción del tiempo de procesamiento frente a la solución centralizada. Finalmente, hemos desarrollado un entorno para la detección de ataques DDoS basado en agrupaciones. En este último caso, se ha caracterizado el tipo de ataques detectados y se ha desarrollado una evaluación sobre la eficiencia y eficacia de la mitigación del impacto del ataque. ABSTRACT Advances in hardware allow to collect huge volumes of data emerging applications that must provide information in near-real time, e.g., patient monitoring, health monitoring of water pipes, etc. The data streaming model emerges to comply with these applications overcoming the traditional store-then-process model. With the store-then-process model, data is stored before being consulted; while, in streaming, data are processed on the fly producing continuous responses. The challenges of streaming for processing data on the fly are the following: 1) responses must be produced continuously whenever new data arrives in the system; 2) data is accessed only once and is generally not maintained in its entirety, and 3) data processing time to produce a response should be low. Two models exist to compute continuous responses: the evolving model and the sliding window model; the latter fits best with applications must be computed over the most recently data rather than all the previous data. In recent years, research in the context of data stream mining has focused mainly on the evolving model. In the sliding window model, the work presented is smaller since these algorithms must be incremental and they must delete the information which expires when the window slides. Clustering is one of the fundamental techniques of data mining and is used to analyze data sets in order to find representative groups that provide a concise description of the data being processed. Clustering is critical in applications such as network intrusion detection or customer segmentation in marketing and advertising. Due to the huge amount of data that must be processed by such applications (up to millions of events per second), centralized solutions are usually unable to cope with timing restrictions and recur to shedding techniques where data is discarded during load peaks. To avoid discarding of data, processing of streams (such as clustering) must be distributed and adapted to environments where information is distributed. In streaming, research does not only focus on designing for general tasks, such as clustering, but also in finding new approaches that fit bests with particular scenarios. As an example, an ad-hoc grouping mechanism turns out to be more adequate than k-means for defense against Distributed Denial of Service (DDoS). This thesis contributes to the data stream mining clustering technique both for centralized and distributed environments. We present a centralized clustering algorithm showing capabilities to discover clusters of high quality in low time and we provide a comparison with existing state of the art solutions. We have worked on a data structure that significantly reduces memory requirements while controlling the error of the clusters statistics. We also provide two distributed clustering protocols. We focus on the analysis of two key features: the impact on the clustering quality when computation is distributed and the requirements for reducing the processing time compared to the centralized solution. Finally, with respect to ad-hoc grouping techniques, we have developed a DDoS detection framework based on clustering.We have characterized the attacks detected and we have evaluated the efficiency and effectiveness of mitigating the attack impact.
Resumo:
La diabetes mellitus es el conjunto de alteraciones provocadas por un defecto en la cantidad de insulina secretada o por un aprovechamiento deficiente de la misma. Es causa directa de complicaciones a corto, medio y largo plazo que disminuyen la calidad y las expectativas de vida de las personas con diabetes. La diabetes mellitus es en la actualidad uno de los problemas más importantes de salud. Ha triplicado su prevalencia en los últimos 20 anos y para el año 2025 se espera que existan casi 300 millones de personas con diabetes. Este aumento de la prevalencia junto con la morbi-mortalidad asociada a sus complicaciones micro y macro-vasculares convierten la diabetes en una carga para los sistemas sanitarios, sus recursos económicos y sus profesionales, haciendo de la enfermedad un problema individual y de salud pública de enormes proporciones. De momento no existe cura a esta enfermedad, de modo que el objetivo terapéutico del tratamiento de la diabetes se centra en la normalización de la glucemia intentando minimizar los eventos de hiper e hipoglucemia y evitando la aparición o al menos retrasando la evolución de las complicaciones vasculares, que constituyen la principal causa de morbi-mortalidad de las personas con diabetes. Un adecuado control diabetológico implica un tratamiento individualizado que considere multitud de factores para cada paciente (edad, actividad física, hábitos alimentarios, presencia de complicaciones asociadas o no a la diabetes, factores culturales, etc.). Sin embargo, a corto plazo, las dos variables más influyentes que el paciente ha de manejar para intervenir sobre su nivel glucémico son la insulina administrada y la dieta. Ambas presentan un retardo entre el momento de su aplicación y el comienzo de su acción, asociado a la absorción de los mismos. Por este motivo la capacidad de predecir la evolución del perfil glucémico en un futuro cercano, ayudara al paciente a tomar las decisiones adecuadas para mantener un buen control de su enfermedad y evitar situaciones de riesgo. Este es el objetivo de la predicción en diabetes: adelantar la evolución del perfil glucémico en un futuro cercano para ayudar al paciente a adaptar su estilo de vida y sus acciones correctoras, con el propósito de que sus niveles de glucemia se aproximen a los de una persona sana, evitando así los síntomas y complicaciones de un mal control. La aparición reciente de los sistemas de monitorización continua de glucosa ha proporcionado nuevas alternativas. La disponibilidad de un registro exhaustivo de las variaciones del perfil glucémico, con un periodo de muestreo de entre uno y cinco minutos, ha favorecido el planteamiento de nuevos modelos que tratan de predecir la glucemia utilizando tan solo las medidas anteriores de glucemia o al menos reduciendo significativamente la información de entrada a los algoritmos. El hecho de requerir menor intervención por parte del paciente, abre nuevas posibilidades de aplicación de los predictores de glucemia, haciéndose viable su uso en tiempo real, como sistemas de ayuda a la decisión, como detectores de situaciones de riesgo o integrados en algoritmos automáticos de control. En esta tesis doctoral se proponen diferentes algoritmos de predicción de glucemia para pacientes con diabetes, basados en la información registrada por un sistema de monitorización continua de glucosa así como incorporando la información de la insulina administrada y la ingesta de carbohidratos. Los algoritmos propuestos han sido evaluados en simulación y utilizando datos de pacientes registrados en diferentes estudios clínicos. Para ello se ha desarrollado una amplia metodología, que trata de caracterizar las prestaciones de los modelos de predicción desde todos los puntos de vista: precisión, retardo, ruido y capacidad de detección de situaciones de riesgo. Se han desarrollado las herramientas de simulación necesarias y se han analizado y preparado las bases de datos de pacientes. También se ha probado uno de los algoritmos propuestos para comprobar la validez de la predicción en tiempo real en un escenario clínico. Se han desarrollado las herramientas que han permitido llevar a cabo el protocolo experimental definido, en el que el paciente consulta la predicción bajo demanda y tiene el control sobre las variables metabólicas. Este experimento ha permitido valorar el impacto sobre el control glucémico del uso de la predicción de glucosa. ABSTRACT Diabetes mellitus is the set of alterations caused by a defect in the amount of secreted insulin or a suboptimal use of insulin. It causes complications in the short, medium and long term that affect the quality of life and reduce the life expectancy of people with diabetes. Diabetes mellitus is currently one of the most important health problems. Prevalence has tripled in the past 20 years and estimations point out that it will affect almost 300 million people by 2025. Due to this increased prevalence, as well as to morbidity and mortality associated with micro- and macrovascular complications, diabetes has become a burden on health systems, their financial resources and their professionals, thus making the disease a major individual and a public health problem. There is currently no cure for this disease, so that the therapeutic goal of diabetes treatment focuses on normalizing blood glucose events. The aim is to minimize hyper- and hypoglycemia and to avoid, or at least to delay, the appearance and development of vascular complications, which are the main cause of morbidity and mortality among people with diabetes. A suitable, individualized and controlled treatment for diabetes involves many factors that need to be considered for each patient: age, physical activity, eating habits, presence of complications related or unrelated to diabetes, cultural factors, etc. However, in the short term, the two most influential variables that the patient has available in order to manage his/her glycemic levels are administered insulin doses and diet. Both suffer from a delay between their time of application and the onset of the action associated with their absorption. Therefore, the ability to predict the evolution of the glycemic profile in the near future could help the patient to make appropriate decisions on how to maintain good control of his/her disease and to avoid risky situations. Hence, the main goal of glucose prediction in diabetes consists of advancing the evolution of glycemic profiles in the near future. This would assist the patient in adapting his/her lifestyle and in taking corrective actions in a way that blood glucose levels approach those of a healthy person, consequently avoiding the symptoms and complications of a poor glucose control. The recent emergence of continuous glucose monitoring systems has provided new alternatives in this field. The availability of continuous records of changes in glycemic profiles (with a sampling period of one or five minutes) has enabled the design of new models which seek to predict blood glucose by using automatically read glucose measurements only (or at least, reducing significantly the data input manually to the algorithms). By requiring less intervention by the patient, new possibilities are open for the application of glucose predictors, making its use feasible in real-time applications, such as: decision support systems, hypo- and hyperglycemia detectors, integration into automated control algorithms, etc. In this thesis, different glucose prediction algorithms are proposed for patients with diabetes. These are based on information recorded by a continuous glucose monitoring system and incorporate information of the administered insulin and carbohydrate intakes. The proposed algorithms have been evaluated in-silico and using patients’ data recorded in different clinical trials. A complete methodology has been developed to characterize the performance of predictive models from all points of view: accuracy, delay, noise and ability to detect hypo- and hyperglycemia. In addition, simulation tools and patient databases have been deployed. One of the proposed algorithms has additionally been evaluated in terms of real-time prediction performance in a clinical scenario in which the patient checked his/her glucose predictions on demand and he/she had control on his/her metabolic variables. This has allowed assessing the impact of using glucose prediction on glycemic control. The tools to carry out the defined experimental protocols were also developed in this thesis.
Resumo:
En las redes convergentes inalámbricas, el traspaso horizontal entre distintos puntos de acceso de la red WLAN es una gran fuente de degradación de la calidad de la VoIP y otros servicios conversacionales en tiempo real. Esto es debido a que este tipo de redes no fueron concebidas originalmente para soportar este tipo de servicios, y los traspasos siguen un protocolo ¿cortar antes de realizar¿, produciéndose interrupciones en la comunicación motivadas por el tiempo que necesitan los terminales en volver a asociarse a la red. En este artículo se estudia el efecto que tienen el tamaño de la ventana de promediado de la señal, la histéresis variable y el retardo del handover por parecido entre potencia de puntos de acceso de destino sobre el número de traspasos y las caídas de la potencia de señal por debajo del valor de sensibilidad del terminal, causantes principales de las interrupciones en la comunicación, y, con ello, de la degradación de la calidad de las comunicaciones.
Resumo:
La sociedad depende hoy más que nunca de la tecnología, pero la inversión en seguridad es escasa y los riesgos de usar sistemas informáticos son cada día mayores. La criptografía es una de las piedras angulares de la seguridad en este ámbito, por lo que recientemente se ha dedicado una cantidad considerable de recursos al desarrollo de herramientas que ayuden en la evaluación y mejora de los algoritmos criptográficos. EasyCrypt es uno de estos sistemas, desarrollado recientemente en el Instituto IMDEA Software en respuesta a la creciente necesidad de disponer de herramientas fiables de verificación de criptografía. A lo largo de este trabajo se abordará el diseño e implementación de funcionalidad adicional para EasyCrypt. En la primera parte de documento se discutirá la importancia de disponer de una forma de especificar el coste de algoritmos a la hora de desarrollar pruebas que dependan del mismo, y se modificará el lenguaje de EasyCrypt para permitir al usuario abordar un mayor espectro de problemas. En la segunda parte se tratará el problema de la usabilidad de EasyCrypt y se intentará mejorar dentro de lo posible desarrollando una interfaz web que permita usar el sistema fáacilmente y sin necesidad de tener instaladas todas las herramientas que necesita EasyCrypt. ---ABSTRACT---Today, society depends more than ever on technology, but the investment in security is still scarce and the risk of using computer systems is constantly increasing. Cryptography is one of the cornerstones of security, so there has been a considerable amount of efort devoted recently to the development of tools oriented to the evaluation and improvement of cryptographic algorithms. One of these tools is EasyCrypt, developed recently at IMDEA Software Institute in response to the increasing need of reliable cryptography verification tools. Throughout this document we will design and implement two diferent EasyCrypt features. In the first part of the document we will consider the importance of having a way to specify the cost of algorithms in order to develop proofs that depend on it, and then we will modify the EasyCrypt's language so that the user can tackle a wider range of problems. In the second part we will assess EasyCrypt's poor usability and try to improve it by developing a web interface which enables the user to use it easily and without having to install the whole EasyCrypt toolchain.
Resumo:
Desarrollo de teoría y algoritmos para la búsqueda de posiciones óptimas en un espacio circular. En este trabajo se desarrolla una aplicación de los datos direccionales a la ciencia política. Se presenta un modelo en el que las preferencias políticas de los tipos de votantes de una población se representan como puntos de la circunferencia unidad y los partidos políticos buscan las posiciones óptimas en ella para captar el máximo apoyo de ese conjunto finito de tipos de votantes. Se desarrollan algoritmos de búsqueda basados en los estudios realizados y se implementa uno de ellos, realizándose simulaciones de ejemplos relacionados con el posicionamiento político e interpretándose los resultados.
Resumo:
El importante desarrollo tecnológico e industrial surgido especialmente durante la segunda mitad del siglo pasado ha eliminado las históricas limitaciones técnicas en el ámbito de los pro-? yectos arquitectónicos, desembocando en la situación actual en la que cualquier planteamiento formal puede ser analizado desde un punto de vista estructural, concluyéndose por tanto que ha desaparecido la barrera del análisis en lo que al desarrollo de un proyecto arquitectónico se refiere. En la actualidad, al igual que a finales del siglo XIX, nos encontramos en un periodo de transi-? ción, y también, como entonces, es la tecnología la que orienta el cambio. No la tecnología de los nuevos materiales (hormigón y acero) como sucedía tras la revolución industrial sino que es la nueva tecnología digital aplicada a los sistemas de diseño, cálculo y fabricación la que están siendo el motor de la actual transformación. Hoy no es tanto el paradigma mecanicista el que prevalece en muchos casos en la concepción de los edificios sino que, nuevos elementos como la tecnología digital integrada está cambiando la forma de diseñar y concebir el entorno cons-? truido. Ante este contexto cabría plantearse las siguientes cuestiones: ¿Puede el diseño paramétrico y la tecnología CAD-?CAM-?CAE en conjunción con los programas actuales de análisis estructural basados en el Método de los Elementos Finitos hacer más sencilla la construcción de estructu-? ras ligeras y eficientes hoy en día? ¿Puede la tecnología digital ayudar a ampliar el abanico for-? mal a la hora de diseñar edificios y a la vez permitir el uso de sistemas estructurales racionales que optimicen el consumo de materiales bajo dichas circunstancias?
Resumo:
La nanotecnología es un área de investigación de reciente creación que trata con la manipulación y el control de la materia con dimensiones comprendidas entre 1 y 100 nanómetros. A escala nanométrica, los materiales exhiben fenómenos físicos, químicos y biológicos singulares, muy distintos a los que manifiestan a escala convencional. En medicina, los compuestos miniaturizados a nanoescala y los materiales nanoestructurados ofrecen una mayor eficacia con respecto a las formulaciones químicas tradicionales, así como una mejora en la focalización del medicamento hacia la diana terapéutica, revelando así nuevas propiedades diagnósticas y terapéuticas. A su vez, la complejidad de la información a nivel nano es mucho mayor que en los niveles biológicos convencionales (desde el nivel de población hasta el nivel de célula) y, por tanto, cualquier flujo de trabajo en nanomedicina requiere, de forma inherente, estrategias de gestión de información avanzadas. Desafortunadamente, la informática biomédica todavía no ha proporcionado el marco de trabajo que permita lidiar con estos retos de la información a nivel nano, ni ha adaptado sus métodos y herramientas a este nuevo campo de investigación. En este contexto, la nueva área de la nanoinformática pretende detectar y establecer los vínculos existentes entre la medicina, la nanotecnología y la informática, fomentando así la aplicación de métodos computacionales para resolver las cuestiones y problemas que surgen con la información en la amplia intersección entre la biomedicina y la nanotecnología. Las observaciones expuestas previamente determinan el contexto de esta tesis doctoral, la cual se centra en analizar el dominio de la nanomedicina en profundidad, así como en el desarrollo de estrategias y herramientas para establecer correspondencias entre las distintas disciplinas, fuentes de datos, recursos computacionales y técnicas orientadas a la extracción de información y la minería de textos, con el objetivo final de hacer uso de los datos nanomédicos disponibles. El autor analiza, a través de casos reales, alguna de las tareas de investigación en nanomedicina que requieren o que pueden beneficiarse del uso de métodos y herramientas nanoinformáticas, ilustrando de esta forma los inconvenientes y limitaciones actuales de los enfoques de informática biomédica a la hora de tratar con datos pertenecientes al dominio nanomédico. Se discuten tres escenarios diferentes como ejemplos de actividades que los investigadores realizan mientras llevan a cabo su investigación, comparando los contextos biomédico y nanomédico: i) búsqueda en la Web de fuentes de datos y recursos computacionales que den soporte a su investigación; ii) búsqueda en la literatura científica de resultados experimentales y publicaciones relacionadas con su investigación; iii) búsqueda en registros de ensayos clínicos de resultados clínicos relacionados con su investigación. El desarrollo de estas actividades requiere el uso de herramientas y servicios informáticos, como exploradores Web, bases de datos de referencias bibliográficas indexando la literatura biomédica y registros online de ensayos clínicos, respectivamente. Para cada escenario, este documento proporciona un análisis detallado de los posibles obstáculos que pueden dificultar el desarrollo y el resultado de las diferentes tareas de investigación en cada uno de los dos campos citados (biomedicina y nanomedicina), poniendo especial énfasis en los retos existentes en la investigación nanomédica, campo en el que se han detectado las mayores dificultades. El autor ilustra cómo la aplicación de metodologías provenientes de la informática biomédica a estos escenarios resulta efectiva en el dominio biomédico, mientras que dichas metodologías presentan serias limitaciones cuando son aplicadas al contexto nanomédico. Para abordar dichas limitaciones, el autor propone un enfoque nanoinformático, original, diseñado específicamente para tratar con las características especiales que la información presenta a nivel nano. El enfoque consiste en un análisis en profundidad de la literatura científica y de los registros de ensayos clínicos disponibles para extraer información relevante sobre experimentos y resultados en nanomedicina —patrones textuales, vocabulario en común, descriptores de experimentos, parámetros de caracterización, etc.—, seguido del desarrollo de mecanismos para estructurar y analizar dicha información automáticamente. Este análisis concluye con la generación de un modelo de datos de referencia (gold standard) —un conjunto de datos de entrenamiento y de test anotados manualmente—, el cual ha sido aplicado a la clasificación de registros de ensayos clínicos, permitiendo distinguir automáticamente los estudios centrados en nanodrogas y nanodispositivos de aquellos enfocados a testear productos farmacéuticos tradicionales. El presente trabajo pretende proporcionar los métodos necesarios para organizar, depurar, filtrar y validar parte de los datos nanomédicos existentes en la actualidad a una escala adecuada para la toma de decisiones. Análisis similares para otras tareas de investigación en nanomedicina ayudarían a detectar qué recursos nanoinformáticos se requieren para cumplir los objetivos actuales en el área, así como a generar conjunto de datos de referencia, estructurados y densos en información, a partir de literatura y otros fuentes no estructuradas para poder aplicar nuevos algoritmos e inferir nueva información de valor para la investigación en nanomedicina. ABSTRACT Nanotechnology is a research area of recent development that deals with the manipulation and control of matter with dimensions ranging from 1 to 100 nanometers. At the nanoscale, materials exhibit singular physical, chemical and biological phenomena, very different from those manifested at the conventional scale. In medicine, nanosized compounds and nanostructured materials offer improved drug targeting and efficacy with respect to traditional formulations, and reveal novel diagnostic and therapeutic properties. Nevertheless, the complexity of information at the nano level is much higher than the complexity at the conventional biological levels (from populations to the cell). Thus, any nanomedical research workflow inherently demands advanced information management. Unfortunately, Biomedical Informatics (BMI) has not yet provided the necessary framework to deal with such information challenges, nor adapted its methods and tools to the new research field. In this context, the novel area of nanoinformatics aims to build new bridges between medicine, nanotechnology and informatics, allowing the application of computational methods to solve informational issues at the wide intersection between biomedicine and nanotechnology. The above observations determine the context of this doctoral dissertation, which is focused on analyzing the nanomedical domain in-depth, and developing nanoinformatics strategies and tools to map across disciplines, data sources, computational resources, and information extraction and text mining techniques, for leveraging available nanomedical data. The author analyzes, through real-life case studies, some research tasks in nanomedicine that would require or could benefit from the use of nanoinformatics methods and tools, illustrating present drawbacks and limitations of BMI approaches to deal with data belonging to the nanomedical domain. Three different scenarios, comparing both the biomedical and nanomedical contexts, are discussed as examples of activities that researchers would perform while conducting their research: i) searching over the Web for data sources and computational resources supporting their research; ii) searching the literature for experimental results and publications related to their research, and iii) searching clinical trial registries for clinical results related to their research. The development of these activities will depend on the use of informatics tools and services, such as web browsers, databases of citations and abstracts indexing the biomedical literature, and web-based clinical trial registries, respectively. For each scenario, this document provides a detailed analysis of the potential information barriers that could hamper the successful development of the different research tasks in both fields (biomedicine and nanomedicine), emphasizing the existing challenges for nanomedical research —where the major barriers have been found. The author illustrates how the application of BMI methodologies to these scenarios can be proven successful in the biomedical domain, whilst these methodologies present severe limitations when applied to the nanomedical context. To address such limitations, the author proposes an original nanoinformatics approach specifically designed to deal with the special characteristics of information at the nano level. This approach consists of an in-depth analysis of the scientific literature and available clinical trial registries to extract relevant information about experiments and results in nanomedicine —textual patterns, common vocabulary, experiment descriptors, characterization parameters, etc.—, followed by the development of mechanisms to automatically structure and analyze this information. This analysis resulted in the generation of a gold standard —a manually annotated training or reference set—, which was applied to the automatic classification of clinical trial summaries, distinguishing studies focused on nanodrugs and nanodevices from those aimed at testing traditional pharmaceuticals. The present work aims to provide the necessary methods for organizing, curating and validating existing nanomedical data on a scale suitable for decision-making. Similar analysis for different nanomedical research tasks would help to detect which nanoinformatics resources are required to meet current goals in the field, as well as to generate densely populated and machine-interpretable reference datasets from the literature and other unstructured sources for further testing novel algorithms and inferring new valuable information for nanomedicine.
Resumo:
La minería de datos es un campo de las ciencias de la computación referido al proceso que intenta descubrir patrones en grandes volúmenes de datos. La minería de datos busca generar información similar a la que podría producir un experto humano. Además es el proceso de descubrir conocimientos interesantes, como patrones, asociaciones, cambios, anomalías y estructuras significativas a partir de grandes cantidades de datos almacenadas en bases de datos, data warehouses o cualquier otro medio de almacenamiento de información. El aprendizaje automático o aprendizaje de máquinas es una rama de la Inteligencia artificial cuyo objetivo es desarrollar técnicas que permitan a las computadoras aprender. De forma más concreta, se trata de crear programas capaces de generalizar comportamientos a partir de una información no estructurada suministrada en forma de ejemplos. La minería de datos utiliza métodos de aprendizaje automático para descubrir y enumerar patrones presentes en los datos. En los últimos años se han aplicado las técnicas de clasificación y aprendizaje automático en un número elevado de ámbitos como el sanitario, comercial o de seguridad. Un ejemplo muy actual es la detección de comportamientos y transacciones fraudulentas en bancos. Una aplicación de interés es el uso de las técnicas desarrolladas para la detección de comportamientos fraudulentos en la identificación de usuarios existentes en el interior de entornos inteligentes sin necesidad de realizar un proceso de autenticación. Para comprobar que estas técnicas son efectivas durante la fase de análisis de una determinada solución, es necesario crear una plataforma que de soporte al desarrollo, validación y evaluación de algoritmos de aprendizaje y clasificación en los entornos de aplicación bajo estudio. El proyecto planteado está definido para la creación de una plataforma que permita evaluar algoritmos de aprendizaje automático como mecanismos de identificación en espacios inteligentes. Se estudiarán tanto los algoritmos propios de este tipo de técnicas como las plataformas actuales existentes para definir un conjunto de requisitos específicos de la plataforma a desarrollar. Tras el análisis se desarrollará parcialmente la plataforma. Tras el desarrollo se validará con pruebas de concepto y finalmente se verificará en un entorno de investigación a definir. ABSTRACT. The data mining is a field of the sciences of the computation referred to the process that it tries to discover patterns in big volumes of information. The data mining seeks to generate information similar to the one that a human expert might produce. In addition it is the process of discovering interesting knowledge, as patterns, associations, changes, abnormalities and significant structures from big quantities of information stored in databases, data warehouses or any other way of storage of information. The machine learning is a branch of the artificial Intelligence which aim is to develop technologies that they allow the computers to learn. More specifically, it is a question of creating programs capable of generalizing behaviors from not structured information supplied in the form of examples. The data mining uses methods of machine learning to discover and to enumerate present patterns in the information. In the last years there have been applied classification and machine learning techniques in a high number of areas such as healthcare, commercial or security. A very current example is the detection of behaviors and fraudulent transactions in banks. An application of interest is the use of the techniques developed for the detection of fraudulent behaviors in the identification of existing Users inside intelligent environments without need to realize a process of authentication. To verify these techniques are effective during the phase of analysis of a certain solution, it is necessary to create a platform that support the development, validation and evaluation of algorithms of learning and classification in the environments of application under study. The project proposed is defined for the creation of a platform that allows evaluating algorithms of machine learning as mechanisms of identification in intelligent spaces. There will be studied both the own algorithms of this type of technologies and the current existing platforms to define a set of specific requirements of the platform to develop. After the analysis the platform will develop partially. After the development it will be validated by prove of concept and finally verified in an environment of investigation that would be define.
Resumo:
El comportamiento mecánico de muchos materiales biológicos y poliméricos en grandes deformaciones se puede describir adecuadamente mediante formulaciones isocóricas hiperelásticas y viscoelásticas. Las ecuaciones de comportamiento elástico y viscoelástico y las formulaciones computacionales para materiales incompresibles isótropos en deformaciones finitas están ampliamente desarrolladas en la actualidad. Sin embargo, el desarrollo de modelos anisótropos no lineales y de sus correspondientes formulaciones computacionales sigue siendo un tema de investigación de gran interés. Cuando se consideran grandes deformaciones, existen muchas medidas de deformación disponibles con las que poder formular las ecuaciones de comportamiento. Los modelos en deformaciones cuadráticas facilitan la implementación en códigos de elementos finitos, ya que estas medidas surgen de forma natural en la formulación. No obstante, pueden dificultar la interpretación de los modelos y llevar a resultados pocos realistas. El uso de deformaciones logarítmicas permite el desarrollo de modelos más simples e intuitivos, aunque su formulación computacional debe ser adaptada a las exigencias del programa. Como punto de partida, en esta tesis se demuestra que las deformaciones logarítmicas representan la extensión natural de las deformaciones infinitesimales, tanto axiales como angulares, al campo de las grandes deformaciones. Este hecho permite explicar la simplicidad de las ecuaciones resultantes. Los modelos hiperelásticos predominantes en la actualidad están formulados en invariantes de deformaciones cuadráticas. Estos modelos, ya sean continuos o microestructurales, se caracterizan por tener una forma analítica predefinida. Su expresión definitiva se calcula mediante un ajuste de curvas a datos experimentales. Un modelo que no sigue esta metodología fue desarrollado por Sussman y Bathe. El modelo es sólo válido para isotropía y queda definido por una función de energía interpolada con splines, la cual reproduce los datos experimentales de forma exacta. En esta tesis se presenta su extensión a materiales transversalmente isótropos y ortótropos utilizando deformaciones logarítmicas. Asimismo, se define una nueva propiedad que las funciones de energía anisótropas deben satisfacer para que su convergencia al caso isótropo sea correcta. En visco-hiperelasticidad, aparte de las distintas funciones de energía disponibles, hay dos aproximaciones computational típicas basadas en variables internas. El modelo original de Simó está formulado en tensiones y es válido para materiales anisótropos, aunque sólo es adecuado para pequeñas desviaciones con respecto al equilibrio termodinámico. En cambio, el modelo basado en deformaciones de Reese y Govindjee permite grandes deformaciones no equilibradas pero es, en esencia, isótropo. Las formulaciones anisótropas en este último contexto son microestructurales y emplean el modelo isótropo para cada uno de los constituyentes. En esta tesis se presentan dos formulaciones fenomenológicas viscoelásticas definidas mediante funciones hiperelásticas anisótropas y válidas para grandes desviaciones con respecto al equilibrio termodinámico. El primero de los modelos está basado en la descomposición multiplicativa de Sidoroff y requiere un comportamiento viscoso isótropo. La formulación converge al modelo de Reese y Govindjee en el caso especial de isotropía elástica. El segundo modelo se define a partir de una descomposición multiplicativa inversa. Esta formulación está basada en una descripción co-rotacional del problema, es sustancialmente más compleja y puede dar lugar a tensores constitutivos ligeramente no simétricos. Sin embargo, su rango de aplicación es mucho mayor ya que permite un comportamiento anisótropo tanto elástico como viscoso. Varias simulaciones de elementos finitos muestran la gran versatilidad de estos modelos cuando se combinan con funciones hiperelásticas formadas por splines. ABSTRACT The mechanical behavior of many polymeric and biological materials may be properly modelled be means of isochoric hyperelastic and viscoelastic formulations. These materials may sustain large strains. The viscoelastic computational formulations for isotropic incompressible materials at large strains may be considered well established; for example Ogden’s hyperelastic function and the visco-hyperelastic model of Reese and Govindjee are well known models for isotropy. However, anisotropic models and computational procedures both for hyperelasticity and viscohyperelasticity are still under substantial research. Anisotropic hyperelastic models are typically based on structural invariants obtained from quadratic strain measures. These models may be microstructurallybased or phenomenological continuum formulations, and are characterized by a predefined analytical shape of the stored energy. The actual final expression of the stored energy depends on some material parameters which are obtained from an optimization algorithm, typically the Levenberg-Marquardt algorithm. We present in this work anisotropic spline-based hyperelastic stored energies in which the shape of the stored energy is obtained as part of the procedure and which (exactly in practice) replicates the experimental data. These stored energies are based on invariants obtained from logarithmic strain measures. These strain measures preserve the metric and the physical meaning of the trace and deviator operators and, hence, are interesting and meaningful for anisotropic formulations. Furthermore, the proposed stored energies may be formulated in order to have material-symmetries congruency both from a theoretical and from a numerical point of view, which are new properties that we define in this work. On the other hand, visco-hyperelastic formulations for anisotropic materials are typically based on internal stress-like variables following a procedure used by Sim´o. However, it can be shown that this procedure is not adequate for large deviations from thermodynamic equilibrium. In contrast, a formulation given by Reese and Govindjee is valid for arbitrarily large deviations from thermodynamic equilibrium but not for anisotropic stored energy functions. In this work we present two formulations for visco-hyperelasticity valid for anisotropic stored energies and large deviations from thermodynamic equilibrium. One of the formulations is based on the Sidoroff multiplicative decomposition and converges to the Reese and Govindjee formulation for the case of isotropy. However, the formulation is restricted to isotropy for the viscous component. The second formulation is based on a reversed multiplicative decomposition. This last formulation is substantially more complex and based on a corotational description of the problem. It can also result in a slightly nonsymmetric tangent. However, the formulation allows for anisotropy not only in the equilibrated and non-equilibrated stored energies, but also in the viscous behavior. Some examples show finite element implementation, versatility and interesting characteristics of the models.