21 resultados para ALMATracker tracking antenna satellite orbita LabVIEW
Resumo:
This paper presents a simple gravity evaluation model for large reflector antennas and the experimental example for a case study of one uplink array of 4x35-m antennas at X and Ka band. This model can be used to evaluate the gain reduction as a function of the maximum gravity distortion, and also to specify this at system designer level. The case study consists of one array of 35-m antennas for deep space missions. Main issues due to the gravity effect have been explored with Monte Carlo based simulation analysis.
Resumo:
This paper introduces novel calibration processes applied to antenna arrays with new architectures and technologies designed to improve the performance of traditional earth stations for satellite communications due to the increasing requirement of data capacity during last decades. Besides, the Radiation Group from the Technical University of Madrid has been working on the development of new antenna arrays based on novel architecture and technologies along many projects as a solution for the ground segment in the early future. Nowadays, the calibration process is an interesting and cutting edge research field in a period of expansion with a lot of work to do for calibration in transmission and also for reception of these novel antennas under development.
Resumo:
An analysis and comparison of daily and yearly solar irradiation from the satellite CM SAF database and a set of 301 stations from the Spanish SIAR network is performed using data of 2010 and 2011. This analysis is completed with the comparison of the estimations of effective irradiation incident on three different tilted planes (fixed, two axis tracking, north-south hori- zontal axis) using irradiation from these two data sources. Finally, a new map of yearly values of irradiation both on the horizontal plane and on inclined planes is produced mixing both sources with geostatistical techniques (kriging with external drift, KED) The Mean Absolute Difference (MAD) between CM SAF and SIAR is approximately 4% for the irradiation on the horizontal plane and is comprised between 5% and 6% for the irradiation incident on the inclined planes. The MAD between KED and SIAR, and KED and CM SAF is approximately 3% for the irradiation on the horizontal plane and is comprised between 3% and 4% for the irradiation incident on the inclined planes. The methods have been implemented using free software, available as supplementary ma- terial, and the data sources are freely available without restrictions.
Resumo:
An analysis and comparison of daily and yearly solar irradiation from the satellite CM SAF database and a set of 301 stations from the Spanish SIAR network is performed using data of 2010 and 2011. This analysis is completed with the comparison of the estimations of effective irradiation incident on three different tilted planes (fixed, two axis tracking, north-south hori- zontal axis) using irradiation from these two data sources. Finally, a new map of yearly values of irradiation both on the horizontal plane and on inclined planes is produced mixing both sources with geostatistical techniques (kriging with external drift, KED) The Mean Absolute Difference (MAD) between CM SAF and SIAR is approximately 4% for the irradiation on the horizontal plane and is comprised between 5% and 6% for the irradiation incident on the inclined planes. The MAD between KED and SIAR, and KED and CM SAF is approximately 3% for the irradiation on the horizontal plane and is comprised between 3% and 4% for the irradiation incident on the inclined planes. The methods have been implemented using free software, available as supplementary ma- terial, and the data sources are freely available without restrictions.
Resumo:
In this paper a low cost man-pack antenna for satellite communications at X band is presented. The antenna has dual circular polarization in Tx and Rx.
Resumo:
A reflectarray antenna with improved performance is proposed to operate in dual-polarization and transmit-receive frequencies in Ku-band for broadcast satellite applications. The reflectarray element contains two orthogonal sets of four coplanar parallel dipoles printed on two surfaces, each set combining lateral and broadside coupling. A 40-cm prototype has been designed, manufactured, and tested. The lengths of the coupled dipoles in the reflectarray cells have been optimized to produce a collimated beam in dual polarization in the transmit and receive bands. The measured radiation patterns confirm the high performance of the antenna in terms of bandwidth (27%), low losses, and low levels of cross polarization. Some preliminary simulations at 11.95 GHz for a 1.2-m antenna with South American coverage are presented to show the potential of the proposed antenna for spaceborne antennas in Ku-band.