28 resultados para 3D and 2D background modelling
Resumo:
Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory is called to fill the gap in research into stability and transition in flows over or through complex geometries. Historically, global linear instability has been (and still is) concerned with solution of multi-dimensional eigenvalue problems; the maturing of non-modal linear instability ideas in simple parallel flows during the last decade of last century2–4 has given rise to investigation of transient growth scenarios in an ever increasing variety of complex flows. After a brief exposition of the theory, connections are sought with established approaches for structure identification in flows, such as the proper orthogonal decomposition and topology theory in the laminar regime and the open areas for future research, mainly concerning turbulent and three-dimensional flows, are highlighted. Recent results obtained in our group are reported in both the time-stepping and the matrix-forming approaches to global linear theory. In the first context, progress has been made in implementing a Jacobian-Free Newton Krylov method into a standard finite-volume aerodynamic code, such that global linear instability results may now be obtained in compressible flows of aeronautical interest. In the second context a new stable very high-order finite difference method is implemented for the spatial discretization of the operators describing the spatial BiGlobal EVP, PSE-3D and the TriGlobal EVP; combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers.
Resumo:
Ontologies and taxonomies are widely used to organize concepts providing the basis for activities such as indexing, and as background knowledge for NLP tasks. As such, translation of these resources would prove useful to adapt these systems to new languages. However, we show that the nature of these resources is significantly different from the "free-text" paradigm used to train most statistical machine translation systems. In particular, we see significant differences in the linguistic nature of these resources and such resources have rich additional semantics. We demonstrate that as a result of these linguistic differences, standard SMT methods, in particular evaluation metrics, can produce poor performance. We then look to the task of leveraging these semantics for translation, which we approach in three ways: by adapting the translation system to the domain of the resource; by examining if semantics can help to predict the syntactic structure used in translation; and by evaluating if we can use existing translated taxonomies to disambiguate translations. We present some early results from these experiments, which shed light on the degree of success we may have with each approach
Resumo:
En esta Tesis Doctoral se aborda la utilización de filtros de difusión no lineal para obtener imágenes constantes a trozos como paso previo al proceso de segmentación. En una primera parte se propone un formulación intrínseca para la ecuación de difusión no lineal que proporcione las condiciones de diseño necesarias sobre los filtros de difusión. A partir del marco teórico propuesto, se proporciona una nueva familia de difusividades; éstas son obtenidas a partir de técnicas de difusión no lineal relacionadas con los procesos de difusión regresivos. El objetivo es descomponer la imagen en regiones cerradas que sean homogéneas en sus niveles de grises sin contornos difusos. Asimismo, se prueba que la función de difusividad propuesta satisface las condiciones de un correcto planteamiento semi-discreto. Esto muestra que mediante el esquema semi-implícito habitualmente utilizado, realmente se hace un proceso de difusión no lineal directa, en lugar de difusión inversa, conectando con proceso de preservación de bordes. Bajo estas condiciones establecidas, se plantea un criterio de parada para el proceso de difusión, para obtener imágenes constantes a trozos con un bajo coste computacional. Una vez aplicado todo el proceso al caso unidimensional, se extienden los resultados teóricos, al caso de imágenes en 2D y 3D. Para el caso en 3D, se detalla el esquema numérico para el problema evolutivo no lineal, con condiciones de contorno Neumann homogéneas. Finalmente, se prueba el filtro propuesto para imágenes reales en 2D y 3D y se ilustran los resultados de la difusividad propuesta como método para obtener imágenes constantes a trozos. En el caso de imágenes 3D, se aborda la problemática del proceso previo a la segmentación del hígado, mediante imágenes reales provenientes de Tomografías Axiales Computarizadas (TAC). En ese caso, se obtienen resultados sobre la estimación de los parámetros de la función de difusividad propuesta. This Ph.D. Thesis deals with the case of using nonlinear diffusion filters to obtain piecewise constant images as a previous process for segmentation techniques. I have first shown an intrinsic formulation for the nonlinear diffusion equation to provide some design conditions on the diffusion filters. According to this theoretical framework, I have proposed a new family of diffusivities; they are obtained from nonlinear diffusion techniques and are related with backward diffusion. Their goal is to split the image in closed contours with a homogenized grey intensity inside and with no blurred edges. It has also proved that the proposed filters satisfy the well-posedness semi-discrete and full discrete scale-space requirements. This shows that by using semi-implicit schemes, a forward nonlinear diffusion equation is solved, instead of a backward nonlinear diffusion equation, connecting with an edgepreserving process. Under the conditions established for the diffusivity and using a stopping criterion I for the diffusion time, I have obtained piecewise constant images with a low computational effort. The whole process in the one-dimensional case is extended to the case where 2D and 3D theoretical results are applied to real images. For 3D, develops in detail the numerical scheme for nonlinear evolutionary problem with homogeneous Neumann boundary conditions. Finally, I have tested the proposed filter with real images for 2D and 3D and I have illustrated the effects of the proposed diffusivity function as a method to get piecewise constant images. For 3D I have developed a preprocess for liver segmentation with real images from CT (Computerized Tomography). In this case, I have obtained results on the estimation of the parameters of the given diffusivity function.
Resumo:
In Llanas and Lantarón, J. Sci. Comput. 46, 485–518 (2011) we proposed an algorithm (EDAS-d) to approximate the jump discontinuity set of functions defined on subsets of ℝ d . This procedure is based on adaptive splitting of the domain of the function guided by the value of an average integral. The above study was limited to the 1D and 2D versions of the algorithm. In this paper we address the three-dimensional problem. We prove an integral inequality (in the case d=3) which constitutes the basis of EDAS-3. We have performed detailed computational experiments demonstrating effective edge detection in 3D function models with different interface topologies. EDAS-1 and EDAS-2 appealing properties are extensible to the 3D case
Resumo:
Coarse particles of aerodynamic diameter between 2.5 and 10 mm (PMc) are produced by a range of natural (windblown dust and sea sprays) and anthropogenic processes (non-exhaust vehicle emissions, industrial, agriculture, construction and quarrying activities). Although current ambient air quality regulations focus on PM2.5 and PM10, coarse particles are of interest from a public health point of view as they have been associated with certain mortality and morbidity outcomes. In this paper, an analysis of coarse particle levels in three European capitals (London, Madrid and Athens) is presented and discussed. For all three cities we analysed data from both traffic and urban background monitoring sites. The results showed that the levels of coarse particles present significant seasonal, weekly and daily variability. Their wind driven and non-wind driven resuspension as well as their roadside increment due to traffic were estimated. Both the local meteorological conditions and the air mass history indicating long-range atmospheric transport of particles of natural origin are significant parameters that influence the levels of coarse particles in the three cities especially during episodic events.
Resumo:
Physico-chemical and organoleptic characteristics of food depend largely on the microscopic level distribution of gases and water, and connectivity and mobility through the pores. Microstructural characterization of food can be accomplished by Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Spectroscopy (NMR) combined with the application of methods of dissemination and multidimensional relaxometry. In this work, funded by the EC Project InsideFood, several artificial food models, based on foams and gels were studied using MRI and 2D relaxometry. Two different kinds of foams were used: a sugarless and a sugar foam. Then, a half of a syringe was filled with the sugarless foam and the other half with the sugar foam. Then, MRI and NMR experiments were performed and the sample evolution was observed along 3 days in order to quantify macrostructural changes through proton density images and microstructural ones using T1T2 maps, using an inversion CPMG sequence. On the proton density images it may be seen that after 16 hours it was possible to differentiate the macrostructural changes, as the apparition of free water due to a syneresis phenomenon. On the interface it can be seen a brighter area after 16 hours, due to the occurrence of free water. Moreover, thanks to the bidimensional relaxometry (T1-T2) it was possible to differentiate among microscopic changes. Differences between the pores size can be observed as well as the microstructure evolution after 30.5 hours, as a consequence differences are shown on free water redistribution through larger pores and capillarity phenomena between both foams.
Resumo:
The overall objective of this research project is to enrich geographic data with temporal and semantic components in order to significantly improve spatio-temporal analysis of geographic phenomena. To achieve this goal, we intend to establish and incorporate three new layers (structures) into the core of the Geographic Information by using mark-up languages as well as defining a set of methods and tools for enriching the system to make it able to retrieve and exploit such layers (semantic-temporal, geosemantic, and incremental spatio-temporal). Besides these layers, we also propose a set of models (temporal and spatial) and two semantic engines that make the most of the enriched geographic data. The roots of the project and its definition have been previously presented in Siabato & Manso-Callejo 2011. In this new position paper, we extend such work by delineating clearly the methodology and the foundations on which we will base to define the main components of this research: the spatial model, the temporal model, the semantic layers, and the semantic engines. By putting together the former paper and this new work we try to present a comprehensive description of the whole process, from pinpointing the basic problem to describing and assessing the solution. In this new article we just mention the methods and the background to describe how we intend to define the components and integrate them into the GI.
Resumo:
Although the delivery of 3D video services to households is nowadays a reality thanks to frame-compatible formats, many efforts are being made to obtain efficient methods to transmit 3D content offering a high quality of experience to the end users. In this paper, a stereoscopic video streaming scenario is considered and the perceptual impact of various strategies applicable to adaptive streaming situations are compared. Specifically, the mechanisms are based on switching between copies of the content with different coding qualities, on discarding frames of the sequence, on switching from 3D to 2D and on using asymmetric coding of the stereo views. In addition, when video freezes happen, the possibility of keeping the end-to-end latency or maintaining the continuity of the video are considered. These aspects were evaluated carrying out a subjective assessment test considering also visual discomfort issues using a methodology designed to keep as far as possible domestic viewing conditions.
Resumo:
The Partido Stream is a small torrential course that flows into the marsh of the Doñana National Park, an area that was declared a World Heritage Site in 1994. Before 1981, floods occurred, and the stream overflowed onto a floodplain. As an old alluvial fan, the floodplain has its singular orography and functionality. Fromthe floodplain, several drainage channels, locally called caño, discharged into themarsh. The Partido Streamhad themorphology of a caño and covered approximately 8 km from the old fan to the marsh. The stream was straightened and channelised in 1981 to cultivate the old fan. This resulted in floods that were concentrated between the banks in the following years, which caused the depth of water and the shear stress to increase, thus, scouring the river bed and river banks. In this case, the eroded materials were carried towards the marsh where a new alluvial fan evolved. Control measures on the old fan were implemented in 2006 to stop the development of the new alluvial fan downstream over the marsh. Thus, the stream would partially recover its original behaviour that it had before channelisation, moving forwards in a new, balanced state. The present study describes the geomorphological evolution that channelisation has caused since 1981 and the later slow process of recovery of the original hydraulic-sedimentation regime since 2006. Additionally, it deepens the understanding of the original hydraulic behaviour of the stream, combining field data and 2D simulations.
Resumo:
La agricultura es uno de los sectores más afectados por el cambio climático. A pesar de haber demostrado a lo largo de la historia una gran capacidad para adaptarse a nuevas situaciones, hoy en día la agricultura se enfrenta a nuevos retos tales como satisfacer un elevado crecimiento en la demanda de alimentos, desarrollar una agricultura sostenible con el medio ambiente y reducir las emisiones de gases de efecto invernadero. El potencial de adaptación debe ser definido en un contexto que incluya el comportamiento humano, ya que éste juega un papel decisivo en la implementación final de las medidas. Por este motivo, y para desarrollar correctamente políticas que busquen influir en el comportamiento de los agricultores para fomentar la adaptación a estas nuevas condiciones, es necesario entender previamente los procesos de toma de decisiones a nivel individual o de explotación, así como los efectos de los factores que determinan las barreras o motivaciones de la implementación de medidas. Esta Tesis doctoral trata de profundizar en el análisis de factores que influyen en la toma de decisiones de los agricultores para adoptar estrategias de adaptación al cambio climático. Este trabajo revisa la literatura actual y desarrolla un marco metodológico a nivel local y regional. Dos casos de estudio a nivel local (Doñana, España y Makueni, Kenia) han sido llevados a cabo con el fin de explorar el comportamiento de los agricultores hacia la adaptación. Estos casos de estudio representan regiones con notables diferencias en climatología, impactos del cambio climático, barreras para la adaptación y niveles de desarrollo e influencia de las instituciones públicas y privadas en la agricultura. Mientras el caso de estudio de Doñana representa un ejemplo de problemas asociados al uso y escasez del agua donde se espera que se agraven en el futuro, el caso de estudio de Makueni ejemplifica una zona fuertemente amenazada por las predicciones de cambio climático, donde adicionalmente la falta de infraestructura y la tecnología juegan un papel crucial para la implementación de la adaptación. El caso de estudio a nivel regional trata de generalizar en África el comportamiento de los agricultores sobre la implementación de medidas. El marco metodológico que se ha seguido en este trabajo abarca una amplia gama de enfoques y métodos para la recolección y análisis de datos. Los métodos utilizados para la toma de datos incluyen la implementación de encuestas, entrevistas, talleres con grupos de interés, grupos focales de discusión, revisión de estudios previos y bases de datos públicas. Los métodos analíticos incluyen métodos estadísticos, análisis multi‐criterio para la toma de decisiones, modelos de optimización de uso del suelo y un índice compuesto calculado a través de indicadores. Los métodos estadísticos se han utilizado con el fin de evaluar la influencia de los factores socio‐económicos y psicológicos sobre la adopción de medidas de adaptación. Dentro de estos métodos se incluyen regresiones logísticas, análisis de componentes principales y modelos de ecuaciones estructurales. Mientras que el análisis multi‐criterio se ha utilizado con el fin de evaluar las opciones de adaptación de acuerdo a las opiniones de las diferentes partes interesadas, el modelo de optimización ha tenido como fin analizar la combinación óptima de medidas de adaptación. El índice compuesto se ha utilizado para evaluar a nivel regional la implementación de medidas de adaptación en África. En general, los resultados del estudio ponen de relieve la gran importancia de considerar diferentes escalas espaciales a la hora de evaluar la implementación de medidas de adaptación al cambio climático. El comportamiento de los agricultores es diferente entre lugares considerados a una escala local relativamente pequeña, por lo que la generalización de los patrones del comportamiento a escalas regionales o globales resulta relativamente compleja. Los resultados obtenidos han permitido identificar factores determinantes tanto socioeconómicos como psicológicos y calcular su efecto sobre la adopción de medidas de adaptación. Además han proporcionado una mejor comprensión del distinto papel que desempeñan los cinco tipos de capital (natural, físico, financiero, social y humano) en la implementación de estrategias de adaptación. Con este trabajo se proporciona información de gran interés en los procesos de desarrollo de políticas destinadas a mejorar el apoyo de la sociedad a tomar medidas contra el cambio climático. Por último, en el análisis a nivel regional se desarrolla un índice compuesto que muestra la probabilidad de adoptar medidas de adaptación en las regiones de África y se analizan las causas que determinan dicha probabilidad de adopción de medidas. ABSTRACT Agriculture is and will continue to be one of the sectors most affected by climate change. Despite having demonstrated throughout history a great ability to adapt, agriculture today faces new challenges such as meeting growing food demands, developing sustainable agriculture and reducing greenhouse gas emissions. Adaptation policies planned on global, regional or local scales are ultimately implemented in decision‐making processes at the farm or individual level so adaptation potentials have to be set within the context of individual behaviour and regional institutions. Policy instruments can play a formative role in the adoption of such policies by addressing incentives/disincentives that influence farmer’s behaviour. Hence understanding farm‐level decision‐making processes and the influence of determinants of adoption is crucial when designing policies aimed at fostering adoption. This thesis seeks to analyse the factors that influence decision‐making by farmers in relation to the uptake of adaptation options. This work reviews the current knowledge and develops a methodological framework at local and regional level. Whilst the case studies at the local level are conducted with the purpose of exploring farmer’s behaviour towards adaptation the case study at the regional level attempts to up‐scale and generalise theory on adoption of farmlevel adaptation options. The two case studies at the local level (Doñana, Spain and Makueni, Kenya) encompass areas with different; climates, impacts of climate change, adaptation constraints and limits, levels of development, institutional support for agriculture and influence from public and private institutions. Whilst the Doñana Case Study represents an area plagued with water‐usage issues, set to be aggravated further by climate change, Makueni Case study exemplifies an area decidedly threatened by climate change where a lack of infrastructure and technology plays a crucial role in the uptake of adaptation options. The proposed framework is based on a wide range of approaches for collecting and analysing data. The approaches used for data collection include the implementation of surveys, interviews, stakeholder workshops, focus group discussions, a review of previous case studies, and public databases. The analytical methods include statistical approaches, multi criteria analysis for decision‐making, land use optimisation models, and a composite index based on public databases. Statistical approaches are used to assess the influence of socio‐economic and psychological factors on the adoption or support for adaptation measures. The statistical approaches used are logistic regressions, principal component analysis and structural equation modelling. Whilst a multi criteria analysis approach is used to evaluate adaptation options according to the different perspectives of stakeholders, the optimisation model analyses the optimal combination of adaptation options. The composite index is developed to assess adoption of adaptation measures in Africa. Overall, the results of the study highlight the importance of considering various scales when assessing adoption of adaptation measures to climate change. As farmer’s behaviour varies at a local scale there is elevated complexity when generalising behavioural patterns for farmers at regional or global scales. The results identify and estimate the effect of most relevant socioeconomic and psychological factors that influence adoption of adaptation measures to climate change. They also provide a better understanding of the role of the five types of capital (natural, physical, financial, social, and human) on the uptake of farm‐level adaptation options. These assessments of determinants help to explain adoption of climate change measures and provide helpful information in order to design polices aimed at enhancing societal support for adaptation policies. Finally the analysis at the regional level develops a composite index which suggests the likelihood of the regions in Africa to adopt farm‐level adaptation measures and analyses the main causes of this likelihood of adoption.
Resumo:
This paper is a preliminary version of Chapter 3 of a State-of-the-Art Report by the IASS Working Group 5: Concrete Shell Roofs. The intention of this chapter is to set forth for those who intend to design concrete shell roofs information and advice about the selection, verification and utilization of commercial computer tools for analysis and design tasks.The computer analysis and design steps for a concrete shell roof are described. Advice follows on the aspects to be considered in the application of commercial finite element (FE)computer programs to concrete shell analysis, starting with recommendations on how novices can gain confidence and competence in the use of software. To establish vocabulary and provide background references, brief surveys are presented of, first,element types and formulations for shells and, second, challenges presented by advanced analyses of shells. The final section of the chapter indicates what capabilities to seek in selecting commercial FE software for the analysis and design of concrete shell roofs. Brief concluding remarks summarize advice regarding judicious use of computer analysis in design practice.
Resumo:
Carbon (C) and nitrogen (N) process-based models are important tools for estimating and reporting greenhouse gas emissions and changes in soil C stocks. There is a need for continuous evaluation, development and adaptation of these models to improve scientific understanding, national inventories and assessment of mitigation options across the world. To date, much of the information needed to describe different processes like transpiration, photosynthesis, plant growth and maintenance, above and below ground carbon dynamics, decomposition and nitrogen mineralization. In ecosystem models remains inaccessible to the wider community, being stored within model computer source code, or held internally by modelling teams. Here we describe the Global Research Alliance Modelling Platform (GRAMP), a web-based modelling platform to link researchers with appropriate datasets, models and training material. It will provide access to model source code and an interactive platform for researchers to form a consensus on existing methods, and to synthesize new ideas, which will help to advance progress in this area. The platform will eventually support a variety of models, but to trial the platform and test the architecture and functionality, it was piloted with variants of the DNDC model. The intention is to form a worldwide collaborative network (a virtual laboratory) via an interactive website with access to models and best practice guidelines; appropriate datasets for testing, calibrating and evaluating models; on-line tutorials and links to modelling and data provider research groups, and their associated publications. A graphical user interface has been designed to view the model development tree and access all of the above functions.
Resumo:
In the present paper, 1-year PM10 and PM 2.5 data from roadside and urban background monitoring stations in Athens (Greece), Madrid (Spain) and London (UK) are analysed in relation to other air pollutants (NO,NO2,NOx,CO,O3 and SO2)and several meteorological parameters (wind velocity, temperature, relative humidity, precipitation, solar radiation and atmospheric pressure), in order to investigate the sources and factors affecting particulate pollution in large European cities. Principal component and regression analyses are therefore used to quantify the contribution of both combustion and non-combustion sources to the PM10 and PM 2.5 levels observed. The analysis reveals that the EU legislated PM 10 and PM2.5 limit values are frequently breached, forming a potential public health hazard in the areas studied. The seasonal variability patterns of particulates varies among cities and sites, with Athens and Madrid presenting higher PM10 concentrations during the warm period and suggesting the larger relative contribution of secondary and natural particles during hot and dry days. It is estimated that the contribution of non-combustion sources varies substantially among cities, sites and seasons and ranges between 38-67% and 40-62% in London, 26-50% and 20-62% in Athens, and 31-58% and 33-68% in Madrid, for both PM10 and PM 2.5. Higher contributions from non-combustion sources are found at urban background sites in all three cities, whereas in the traffic sites the seasonal differences are smaller. In addition, the non-combustion fraction of both particle metrics is higher during the warm season at all sites. On the whole, the analysis provides evidence of the substantial impact of non-combustion sources on local air quality in all three cities. While vehicular exhaust emissions carry a large part of the risk posed on human health by particle exposure, it is most likely that mitigation measures designed for their reduction will have a major effect only at traffic sites and additional measures will be necessary for the control of background levels. However, efforts in mitigation strategies should always focus on optimal health effects.