24 resultados para 240304 Other Plasma Physics
Resumo:
Electron thermal conduction in a not quite collisional unmagnetlzed plasma is analysed. The failure of classical results for temperature scale-length up to 100 times larger than thermal mean-free-path for electron scattering, and large ion-charge number Z , is discussed. Recent results from a nonlocal model of conduction at large Z are reviewed. Closed form expressions for Braginskii's coefficients a ,/3 , y for Z =0(1) are derived. An extension of the nonlocal model for Z =0(1) is discussed.
Resumo:
The electron-retarding range of the current-voltage characteristic of a flat Langmuir probe perpendicular to a strong magnetic field in a fully ionized plasma is analysed allowing for anomalous (Bohm) cross-field transport and temperature changes in the collection process. With probe size and ion thermal gyroradius comparable, and smaller than the electron mean free path, there is an outer quasineutral region with ion viscosity determinant in allowing nonambipolar parallel and cross flow. A potential overshoot lying either at the base or inside the quasineutral region both makes ions follow Boltzmann's law at negative bias and extends the electron-retarding range to probe bias e(j)p ~ +2Too. Electron heating and cooling occur roughly at positive and negative bias, with a re-minimum around efa ~ - 2 7 ^ ; far from the probe heat conduction cools and heats electrons at and radially away from the probe axis, respectively. The potential overshoot with no thermal effects would reduce the electron current Ie, making the In Ie versus 4>p graph downwards-concave,but cooling further reduces Ie substantially, and may tilt the slope upwards past the temperature minimum. The domain of strict validity of our analysis is narrow in case of low ion mass (deuterium), breaking down with the ion Boltzmann law.
Resumo:
The self-similar motion of a half-space plasma, generated by a linear pulse of laser radiation absorbed anomalously at the critical density, has been studied. The resulting plasma structure has been completely determined for [pulse duration (critical density)maximum irradiation] large enough
Resumo:
A two electron-temperature, quasi-steady model of the corona of a laser-ablated pellet is considered. Ablation pressure, critical radius and mass flow rate are determined. Results are close to those obtained with heat flux saturation well below the free-streaming limit.
Resumo:
We have analyzed a phenomenon heretofore ignored in the analyses of ion traps, which are used to determine ion temperature, among other plasma parameters, in planetary ionospheres: ions that are rejected by the trap perturb the plasma well ahead of the Debye sheath at the front of the trap.The determination of the perturbed plasma flow is found to depend on the fact that the ionospheric plasma be stable to quasineutral, ion-acoustic perturbations.
Resumo:
Collisional analysis of electron collection by a probe in a strongly magnetized, fully ionized plasma is carried out. A solution to the complete set of macroscopic equations with classical transport coefficients that is wholly consistent in the domain is determined; R and le are probe radius and electron gyroradius, respectively. If R2/le 2 is large compared with mi/3me probe large compared with ion gyroradius, ion–electron energy exchange—rather than electron heat diffusion—keeps electrons isothermal. For smaller probes at negative bias, however, electron cooling occurs in the plasma beyond the sheath, with a potential overshoot lying well away from it. The probe characteristic in the electron-retarding range may then mimic the characteristic for a two electron-temperature plasma and lead to an overestimate of electron temperature; the validity of these results for other transport models is discussed
Resumo:
The coherent three-wave interaction, with linear growth in the higher frequency wave and damping in the two other waves, is reconsidered; for equal dampings, the resulting three-dimensional (3-D) flow of a relative phase and just two amplitudes behaved chaotically, no matter how small the growth of the unstable wave. The general case of different dampings is studied here to test whether, and how, that hard scenario for chaos is preserved in passing from 3-D to four-dimensional flows. It is found that the wave with higher damping is partially slaved to the other damped wave; this retains a feature of the original problem an invariant surface that meets an unstable fixed point, at zero growth rate! that gave rise to the chaotic attractor and determined its structure, and suggests that the sudden transition to chaos should appear in more complex wave interactions.