19 resultados para 230112 Topology and Manifolds
Resumo:
Social behavior is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks
Resumo:
En esta tesis se aborda la emergencia de sincronización en sistemas de osciladores acoplados. En particular, nos centraremos en la emergencia de un tipo de transición discontinua entre el estado incoherente y el estado síncrono, llamada transición explosiva. Este fenómeno es análogo al de las transiciones de fase de primer orden asociadas a los cambios de agregación de la materia, cuya importancia abarca diversos campos, desde la sincronización espontánea de redes neuronales al riesgo de desincronización súbita entre los osciladores que componen la red de suministro de potencia eléctrica. Para analizar el problema, se introducen varios métodos de creciente generalidad cuyo efecto es inducir una transición explosiva al imponer una serie condiciones sobre la topología y las frecuencias naturales de cada oscilador. Así mismo, se aborda el estudio de un modelo algo más complejo con características similares para entender en mayor profundidad las características asociadas a este tipo de transiciones, siendo la histéresis una de las más destacadas. Finalmente, se propone un método cuantitativo para describir la importancia de cada nodo en el proceso de sincronización con el objetivo de estudiar y caracterizar el efecto sobre los nodos del sistema de los diversos métodos que inducen una transición explosiva. Este nuevo enfoque permite descubrir un proceso de frustración de la sincronización local en redes de osciladores acoplados, siendo el responsable de la emergencia de la sincronización explosiva. ABSTRACT In this thesis we address the emergence of synchronization in systems of coupled oscillators in complex networks. We focus our attention on a particular kind of discontinuous transitions, named explosive synchronization, where the system changes abruptly from an incoherent state to a synchronous state. This emergent phenomena is analogous to those first order transitions typically associated with changes among the aggregate states of matter, and it is important in many different fields, such as spontaneous synchronization of neurons or spontaneous desynchronization in power grids. To analyze it, we introduce some methods of increasing generality in order to induce such a discontinuous transition by acting over the topology and the natural frequencies in several different ways. Likewise, we address the study of a more complex model in order to acquire deeper knowledge on the properties of this kind of transitions, where a hysteretic behavior is specially relevant. Finally, we propose a new quantitative approach in order to find the importance of each node in the route to synchronization, aiming to provide a characterization of the effects over the network’s units of the different methods able to induce an explosive transition. This approach allows us to show the inner mechanisms behind such explosive behavior in networks of coupled oscillators, being rooted by a frustration of the local synchronization process previous to the emergence of global coherence.
Resumo:
Inspections are used to prevent tax evasion or any other unlawful behavior. ? The effect of inspections depends on the network topology and the contagion rule. ? The network is modeled as a Watts?Strogatz Small World that is tuned from regular to random. ? Two contagion rules are applied: continuous and discontinuous. ? The equilibrium populations of payers and evaders are obtained in terms of these system parameters.
Resumo:
La configuración de un cilindro acoplado a una semi-esfera, conocida como ’hemispherecylinder’, se considera como un modelo simplificado para numerosas aplicaciones industriales tales como fuselaje de aviones o submarinos. Por tanto, el estudio y entendimiento de los fenómenos fluidos que ocurren alrededor de dicha geometría presenta gran interés. En esta tesis se muestra la investigación del origen y evolución de los, ya conocidos, patrones de flujo (burbuja de separación, vórtices ’horn’ y vórtices ’leeward’) que se dan en esta geometría bajo condiciones de flujo separado. Para ello se han llevado a cabo simulaciones numéricas (DNS) y ensayos experimentales usando la técnica de Particle Image Velocimetry (PIV), para una variedad de números de Reynolds (Re) y ángulos de ataque (AoA). Se ha aplicado sobre los resultados numéricos la teoría de puntos críticos obteniendo, por primera vez para esta geometría, un diagrama de bifurcaciones que clasifica los diferentes regímenes topológicos en función del número de Reynolds y del ángulo de ataque. Se ha llevado a cabo una caracterización completa sobre el origen y la evolución de los patrones estructurales característicos del cuerpo estudiado. Puntos críticos de superficie y líneas de corriente tridimensionales han ayudado a describir el origen y la evolución de las principales estructuras presentes en el flujo hasta alcanzar un estado de estabilidad desde el punto de vista topológico. Este estado se asocia con el patrón de los vórtices ’horn’, definido por una topología característica que se encuentra en un rango de números de Reynolds muy amplio y en regímenes compresibles e incompresibles. Por otro lado, con el objeto de determinar las estructuras presentes en el flujo y sus frecuencias asociadas, se han usado distintas técnicas de análisis: Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD) y análisis de Fourier. Dichas técnicas se han aplicado sobre los datos experimentales y numéricos, demostrándose la buena concordancia entre ambos resultados. Finalmente, se ha encontrado en ambos casos, una frecuencia dominante asociada con una inestabilidad de los vórtices ’leeward’. ABSTRACT The hemisphere-cylinder may be considered as a simplified model for several geometries found in industrial applications such as aircrafts’ fuselages or submarines. Understanding the complex flow phenomena that surrounds this particular geometry is therefore of major industrial interest. This thesis presents an investigation of the origin and evolution of the complex flow pattern; i.e. separation bubbles, horn vortices and leeward vortices, around the hemisphere-cylinder under separated flow conditions. To this aim, threedimensional Direct Numerical Simulations (DNS) and experimental tests, using Particle Image Velocimetry (PIV) techniques, have been performed for a variety of Reynolds numbers (Re) and angles of attack (AoA). Critical point theory has been applied to the numerical simulations to provide, for the first time for this geometry, a bifurcation diagram that classifies the different flow topology regimes as a function of the Reynolds number and the angle of attack. A complete characterization about the origin and evolution of the complex structural patterns of this geometry has been put in evidence. Surface critical points and surface and volume streamlines were able to describe the main flow structures and their strong dependence with the flow conditions up to reach the structurally stable state. This state was associated with the pattern of the horn vortices, found on ranges from low to high Reynolds numbers and from incompressible to compressible regimes. In addition, different structural analysis techniques have been employed: Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD) and Fourier analysis. These techniques have been applied to the experimental and numerical data to extract flow structure information (i.e. modes and frequencies). Experimental and numerical modes are shown to be in good agreement. A dominant frequency associated with an instability of the leeward vortices has been identified in both, experimental and numerical results.