184 resultados para Photovoltaic devices


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although photovoltaic (PV) systems have become much more competitive, the diffusion of PV systems still remains low in comparison to conventional energy sources. What are the current barriers hindering the diffusion of PV systems? In order to address this, we conducted an extensive and systematic literature review based on the Web of Science database. Our state-of-the-art review shows that, despite the rapid development and maturity of the technology during the past few years, the adoption of PV systems still faces several barriers. The wide adoption of PV systems-either as a substitute for other electricity power generation systems in urban areas or for rural electrification-is a challenging process. Our results show that the barriers are evident for both low- and high-income economies, encompassing four dimensions: sociotechnical, management, economic, and policy. Although the barriers vary across context, the lessons learned from one study can be valuable to others. The involvement of all stakeholders-adopters, local communities, firms, international organizations, financial institutions, and government-is crucial to foster the adoption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In some countries, photovoltaic (PV) technology is at a stage of development at which it can compete with conventional electricity sources in terms of electricity generation costs, i.e., grid parity. A case in point is Germany, where the PV market has reached a mature stage, the policy support has scaled down and the diffusion rate of PV systems has declined. This development raises a fundamental question: what are the motives to adopt PV systems at grid parity? The point of departure for the relevant literature has been on the impact of policy support, adopters and, recently, local solar companies. However, less attention has been paid to the motivators for adoption at grid parity. This paper presents an in-depth analysis of the diffusion of PV systems, explaining the impact of policy measures, adopters and system suppliers. Anchored in an extensive and exploratory case study in Germany, we provide a context-specific explanation to the motivations to adopt PV systems at grid parity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results for quadruple-junction inverted metamorphic (4J-IMM) devices under the concentrated direct spectrum and analyze the present limitations to performance. The devices integrate lattice-matched subcells with rear heterojunctions, as well as lattice-mismatched subcells with low threading dislocation density. To interconnect the subcells, thermally stable lattice-matched tunnel junctions are used, as well as a metamorphic GaAsSb/GaInAs tunnel junction between the lattice-mismatched subcells. A broadband antireflection coating is used, as well as a front metal grid designed for high concentration operation. The best device has a peak efficiency of (43.8 ± 2.2)% at 327-sun concentration, as measured with a spectrally adjustable flash simulator, and maintains an efficiency of (42.9 ± 2.1)% at 869 suns, which is the highest concentration measured. The Voc increases from 3.445 V at 1-sun to 4.10 V at 327-sun concentration, which indicates high material quality in all of the subcells. The subcell voltages are analyzed using optical modeling, and the present device limitations and pathways to improvement are discussed. Although further improvements are possible, the 4J-IMM structure is clearly capable of very high efficiency at concentration, despite the complications arising from utilizing lattice-mismatched subcells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.