37 resultados para radar, multistatico, UWB, misure, sperimentali, localizzazione, telerilevamento


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foliage Penetration (FOPEN) radar systems were introduced in 1960, and have been constantly improved by several organizations since that time. The use of Synthetic Aperture Radar (SAR) approaches for this application has important advantages, due to the need for high resolution in two dimensions. The design of this type of systems, however, includes some complications that are not present in standard SAR systems. FOPEN SAR systems need to operate with a low central frequency (VHF or UHF bands) in order to be able to penetrate the foliage. High bandwidth is also required to obtain high resolution. Due to the low central frequency, large integration angles are required during SAR image formation, and therefore the Range Migration Algorithm (RMA) is used. This project thesis identifies the three main complications that arise due to these requirements. First, a high fractional bandwidth makes narrowband propagation models no longer valid. Second, the VHF and UHF bands are used by many communications systems. The transmitted signal spectrum needs to be notched to avoid interfering them. Third, those communications systems cause Radio Frequency Interference (RFI) on the received signal. The thesis carries out a thorough analysis of the three problems, their degrading effects and possible solutions to compensate them. The UWB model is applied to the SAR signal, and the degradation induced by it is derived. The result is tested through simulation of both a single pulse stretch processor and the complete RMA image formation. Both methods show that the degradation is negligible, and therefore the UWB propagation effect does not need compensation. A technique is derived to design a notched transmitted signal. Then, its effect on the SAR image formation is evaluated analytically. It is shown that the stretch processor introduces a processing gain that reduces the degrading effects of the notches. The remaining degrading effect after processing gain is assessed through simulation, and an experimental graph of degradation as a function of percentage of nulled frequencies is obtained. The RFI is characterized and its effect on the SAR processor is derived. Once again, a processing gain is found to be introduced by the receiver. As the RFI power can be much higher than that of the desired signal, an algorithm is proposed to remove the RFI from the received signal before RMA processing. This algorithm is a modification of the Chirp Least Squares Algorithm (CLSA) explained in [4], which adapts it to deramped signals. The algorithm is derived analytically and then its performance is evaluated through simulation, showing that it is effective in removing the RFI and reducing the degradation caused by both RFI and notching. Finally, conclusions are drawn as to the importance of each one of the problems in SAR system design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speed enforcement on public roadways is an important issue in order to guarantee road security and to reduce the number and seriousness of traffic accidents. Traditionally, this task has been partially solved using radar and/or laser technologies and, more recently, using video-camera based systems. All these systems have significant shortcomings that have yet to be overcome. The main drawback of classical Doppler radar technology is that the velocity measurement fails when several vehicles are in the radars beam. Modern radar systems are able to measure speed and range between vehicle and radar. However, this is not enough to discriminate the lane where the vehicle is driving on. The limitation of several vehicles in the beam is overcome using laser technology. However, laser systems have another important limitation: They cannot measure the speed of several vehicles simultaneously. Novel video-camera systems, based on license plate identification, solve the previous drawbacks, but they have the problem that they can only measure average speed but never top-speed. This paper studies the feasibility of using an interferometric linear frequency modulated continuous wave radar to improve top-speed enforcement on roadways. Two different systems based on down-the-road and across-the-road radar configurations are presented. The main advantage of the proposed solutions is they can simultaneously measure speed, range, and lane of several vehicles, allowing the univocal identification of the offenders. A detailed analysis about the operation and accuracy of these solutions is reported. In addition, the feasibility of the proposed techniques has been demonstrated with simulations and real experiments using a Ka-band interferometric radar developed by our research group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a compact lightweight impulse radar for radio-echo sounding of subsurface structures designed specifically for glaciological applications. The radar operates at frequencies between 10 and 75 MHz. Its main advantages are that it has a high signal-to-noise ratio and a corresponding wide dynamic range of 132 dB due mainly to its ability to perform real-time stacking (up to 4096 traces) as well as to the high transmitted power (peak voltage 2800 V). The maximum recording time window, 40 ?s at 100 MHz sampling frequency, results in possible radar returns from as deep as 3300 m. It is a versatile radar, suitable for different geophysical measurements (common-offset profiling, common midpoint, transillumination, etc.) and for different profiling set-ups, such as a snowmobile and sledge convoy or carried in a backpack and operated by a single person. Its low power consumption (6.6 W for the transmitter and 7.5 W for the receiver) allows the system to operate under battery power for mayor que7 hours with a total weight of menor que9 kg for all equipment, antennas and batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six-port network is an interesting radiofrequency architecture with multiple possibilities. Since it was firstly introduced in the seventies as an alternative network analyzer, the six-port network has been used for many applications, such as homodyne receivers, radar systems, direction of arrival estimation, UWB (Ultra-Wide-Band), or MIMO (Multiple Input Multiple Output) systems. Currently, it is considered as a one of the best candidates to implement a Software Defined Radio (SDR). This thesis comprises an exhaustive study of this promising architecture, where its fundamentals and the state-of-the-art are also included. In addition, the design and development of a SDR 0.3-6 GHz six-port receiver prototype is presented in this thesis, which is implemented in conventional technology. The system is experimentally characterized and validated for RF signal demodulation with good performance. The analysis of the six-port architecture is complemented by a theoretical and experimental comparison with other radiofrequency architectures suitable for SDR. Some novel contributions are introduced in the present thesis. Such novelties are in the direction of the highly topical issues on six-port technique: development and optimization of real-time I-Q regeneration techniques for multiport networks; and search of new techniques and technologies to contribute to the miniaturization of the six-port architecture. In particular, the novel contributions of this thesis can be summarized as: - Introduction of a new real-time auto-calibration method for multiport receivers, particularly suitable for broadband designs and high data rate applications. - Introduction of a new direct baseband I-Q regeneration technique for five-port receivers. - Contribution to the miniaturization of six-port receivers by the use of the multilayer LTCC (Low Temperature Cofired Ceramic) technology. Implementation of a compact (30x30x1.25 mm) broadband (0.3-6 GHz) six-port receiver in LTTC technology. The results and conclusions derived from this thesis have been satisfactory, and quite fruitful in terms of publications. A total of fourteen works have been published, considering international journals and conferences, and national conferences. Aditionally, a paper has been submitted to an internationally recognized journal, which is currently under review.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A focusing system for a 300 GHz radar with two target distances (5m and 10m) is proposed, having 1cm resolution in both cases. The focusing system is based on a gaussian telescope scheme and it has been designed using gaussian beam quasi-optical propagation theory with a homemade Matlab analysis tool. It has been translated into a real focusing system based on two elliptical mirrors and a plane mirror in order to have scanning capabilities and validated using the commercial antenna software GRASP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a low-power, high-speed 4-data-path 128-point mixed-radix (radix-2 & radix-2 2 ) FFT processor for MB-OFDM Ultra-WideBand (UWB) systems. The processor employs the single-path delay feedback (SDF) pipelined structure for the proposed algorithm, it uses substructure-sharing multiplication units and shift-add structure other than traditional complex multipliers. Furthermore, the word lengths are properly chosen, thus the hardware costs and power consumption of the proposed FFT processor are efficiently reduced. The proposed FFT processor is verified and synthesized by using 0.13 µm CMOS technology with a supply voltage of 1.32 V. The implementation results indicate that the proposed 128-point mixed-radix FFT architecture supports a throughput rate of 1Gsample/s with lower power consumption in comparison to existing 128-point FFT architectures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic Aperture Radar (SAR) images a target region reflectivity function in the multi-dimensional spatial domain of range and cross-range. SAR synthesizes a large aperture radar in order to achieve a finer azimuth resolution than the one provided by any on-board real antenna. Conventional SAR techniques assume a single reflection of transmitted waveforms from targets. Nevertheless, today¿s new scenes force SAR systems to work in urban environments. Consequently, multiple-bounce returns are added to directscatter echoes. We refer to these as ghost images, since they obscure true target image and lead to poor resolution. By analyzing the quadratic phase error (QPE), this paper demonstrates that Earth¿s curvature influences the defocusing degree of multipath returns. In addition to the QPE, other parameters such as integrated sidelobe ratio (ISLR), peak sidelobe ratio (PSLR), contrast (C) and entropy (E) provide us with the tools to identify direct-scatter echoes in images containing undesired returns coming from multipath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las técnicas SAR (Synthetic Aperture Radar, radar de apertura sintética) e ISAR (Inverse SAR, SAR inverso) son sistemas radar coherentes de alta resolución, capaces de proporcionar un mapa de la sección radar del blanco en el dominio espacial de distancia y acimut. El objetivo de ambas técnicas radica en conseguir una resolución acimutal más fina generando una apertura sintética a partir del movimiento relativo entre radar y blanco. Los radares imagen complementan la labor de los sistemas ópticos e infrarrojos convencionales, especialmente en condiciones meteorológicas adversas. Los sistemas SAR e ISAR convencionales se diseñan para iluminar blancos en situaciones de línea de vista entre sensor y blanco. Por este motivo, presentan un menor rendimiento en escenarios complejos, como por ejemplo en bosques o entornos urbanos, donde los retornos multitrayecto se superponen a los ecos directos procedentes de los blancos. Se conocen como "imágenes fantasma", puesto que enmascaran a los verdaderos blancos y dan lugar a una calidad visual pobre, complicando en gran medida la detección del blanco. El problema de la mitigación del multitrayecto en imágenes radar adquiere una relevancia teórica y práctica. En esta Tesis Doctoral, se hace uso del concepto de inversión temporal (Time Reversal, TR) para mejorar la calidad visual de las imágenes SAR e ISAR eliminando las "imágenes fantasma" originadas por la propagación multitrayecto (algoritmos TR-SAR y TR-ISAR, respectivamente). No obstante, previamente a la aplicación de estas innovadoras técnicas de mitigación del multi-trayecto, es necesario resolver el problema geométrico asociado al multitrayecto. Centrando la atención en la mejora de las prestaciones de TR-ISAR, se implementan una serie de técnicas de procesado de señal avanzadas antes y después de la etapa basada en inversión temporal (el eje central de esta Tesis). Las primeras (técnicas de pre-procesado) están relacionadas con el multilook averaging, las transformadas tiempo-frecuencia y la transformada de Radon, mientras que las segundas (técnicas de post-procesado) se componen de un conjunto de algoritmos de superresolución. En pocas palabras, todas ellas pueden verse como un valor añadido al concepto de TR, en lugar de ser consideradas como técnicas independientes. En resumen, la utilización del algoritmo diseñado basado en inversión temporal, junto con algunas de las técnicas de procesado de señal propuestas, no deben obviarse si se desean obtener imágenes ISAR de gran calidad en escenarios con mucho multitrayecto. De hecho, las imágenes resultantes pueden ser útiles para posteriores esquemas de reconocimiento automático de blancos (Automatic Target Recognition, ATR). Como prueba de concepto, se hace uso tanto de datos simulados como experimentales obtenidos a partir de radares de alta resolución con el fin de verificar los métodos propuestos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unified low complexity sign-bit correlation based symbol timing synchronization scheme for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) Ultra Wideband (UWB) receiver system is proposed. By using the time domain sequence of the packet/frame synchronization preamble, the proposed scheme is in charge of detecting the upcoming MB-OFDM symbol and it estimates the exact boundary of the start of Fast Fourier Transform (FFT) window. The proposed algorithm is implemented by using an efficient Hardware-Software co-simulation methodology. The effectiveness of the proposed synchronization scheme and the optimization criteria is confirmed by hardware implementation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a W-band high-resolution radar sensor for short-range applications. Low-cost technologies have been properly selected in order to implement a versatile and easily scalable radar system. A large operational bandwidth of 9 GHz, required for obtaining high-range resolution, is attained by means of a frequency multiplication-based architecture. The system characterization to identify the performance-limiting stages and the subsequent design optimization are presented. The assessment of system performance for several representative applications has been carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 300 GHz radar imaging system is presented, including descriptions of the radar sensor and antenna subsystems. The antenna consists of a Bifocal Ellipsoidal Gregorian Reflector whose beam is scanned by a combination of the rotation and vertical tilting of a flat small secondary mirror. A prototype is being mounted and its characterization will be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The underground cellars that appear in different parts of Spain are part of an agricultural landscape dispersed, sometimes damaged, others at risk of disappearing. This paper studies the measurement and display of a group of wineries located in Atauta (Soria), in the Duero River corridor. It is a unique architectural complex, facing rising, built on a smooth hillock as shown in Fig. 1. These constructions are excavated in the ground. The access to the cave or underground cellar has a shape of a narrow tube or down gallery. Immediately after, this space gets wider. There, wine is produced and stored [1]. Observation and detection of the underground cellar, both on the outside and underground, it is essential to make an inventory of the rural patrimony [2]. The geodetection is a noninvasive technique, adequate to accurately locate buried structures in the ground. Works undertaken include topographic work with the LIDAR techniques and integration with data obtained by GNSS and GPR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radar technologies have been developed to improve the efficiency when detecting targets. Radar is a system composed by several devices connected and working together. Depending on the type of radar, the improvements are focused on different functionalities of the radar. One of the most important devices composing a radar is the antenna, that sends the radio-frequency signal to the space in order to detect targets. This project is focused on a specific type of radar called phased array radar. This type of radar is characterized by its antenna, which consist on a linear array of radiating elements, in this particular case, eight dipoles working at the frequency band S. The main advantage introduced by the phased array antenna is that using the fundamentals of arrays, the directivity of the antenna can change by shifting the phase of the signal at the input of each radiating element. This can be done using phase shifters. Phase shifter consists on a device which produces a phase shift in the radio-frequency input signal depending on a control DC voltage. Using a phased array antenna allows changing the directivity of the antenna without a mechanical rotating system. The objective of this project is to design the feed network and the bias network of the phased antenna. The feed network consists on a parallel-fed network composed by power dividers that sends the radio-frequency signal from the source to each radiating element of the antenna. The bias network consists on a system that generates the control DC voltages supplied to the phase shifters in order to change the directivity. The architecture of the bias network is composed by a software, implemented in Matlab and run in a laptop which is connected to a micro-controller by a serial communication port. The software calculates the control DC voltages needed to obtain a determined directivity or scan angle. These values are sent by the serial communication port to the micro-controller as data. Then the micro-controller generates the desired control DC voltages and supplies them to the phase shifters. In this project two solutions for bias network are designed. Each one is tested and final conclusions are obtained to determine the advantages and disadvantages. Finally a graphic user interface is developed in order to make the system easy to use. RESUMEN. Las tecnologías empleadas por lo dispositivos radar se han ido desarrollando para mejorar su eficiencia y usabilidad. Un radar es un sistema formado por varios subsistemas conectados entre sí. Por lo que dependiendo del tipo de radar las mejoras se centran en los subsistemas correspondientes. Uno de los elementos más importantes de un radar es la antena. Esta se emplea para enviar la señal de radiofrecuencia al espacio y así poder detectar los posibles obstáculos del entorno. Este proyecto se centra en un tipo específico de radar llamado phased array radar. Este tipo de radar se caracteriza por la antena que es un array de antenas, en concreto para este proyecto se trata de un array lineal de ocho dipolos en la banda de frequencia S. El uso de una antena de tipo phased array supone una ventaja importante. Empleando los fundamentos de radiación aplicado a array de antenas se obtiene que la directividad de la antena puede ser modificada. Esto se consigue aplicando distintos desfasajes a la señal de radiofrecuencia que alimenta a cada elemento del array. Para aplicar los desfasajes se emplea un desplazador de fase, este dispositivo aplica una diferencia de fase a su salida con respecto a la señal de entrada dependiendo de una tensión continua de control. Por tanto el empleo de una antena de tipo phased array supone una gran ventaja puesto que no se necesita un sistema de rotación para cambiar la directividad de la antena. El objetivo principal del proyecto consiste en el diseño de la red de alimentación y la red de polarización de la antena de tipo phased array. La red de alimentación consiste en un circuito pasivo que permite alimentar a cada elemento del array con la misma cantidad de señal. Dicha red estará formada por divisores de potencia pasivos y su configuración será en paralelo. Por otro lado la red de polarización consiste en el diseño de un sistema automático que permite cambiar la directividad de la antena. Este sistema consiste en un programa en Matlab que es ejecutado en un ordenador conectado a un micro-controlador mediante una comunicación serie. El funcionamiento se basa en calcular las tensiones continuas de control, que necesitan los desplazadores de fase, mediante un programa en Matlab y enviarlos como datos al micro-controlador. Dicho micro-controlador genera las tensiones de control deseadas y las proporciona a cada desplazador de fase, obteniendo así la directividad deseada. Debido al amplio abanico de posibilidades, se obtienen dos soluciones que son sometidas a pruebas. Se obtienen las ventajas y desventajas de cada una. Finalmente se implementa una interfaz gráfica de usuario con el objetivo de hacer dicho sistema manejable y entendible para cualquier usuario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Space Situational Awareness (SSA) program from the European Space Agency (ESA) protects Europe's citizens and their satellite-based services by detecting space hazards. ESA Ground Systems (GS) division is currently designing a phased array radar composed of thousands of radiating elements for future stages of the SSA program [1]. The radar shall guarantee the detection of most of the Low Earth Orbit (LEO) space debris, providing a general map of space junk. While range accuracy is mainly dictated by the radar waveform, the detection and tracking of small objects in LEO regimes is highly dependent on the angular accuracy achieved by the smart phased array antenna, demonstrating the important of the performance of this architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se presenta una metodología eficiente de diseño de reflectores de zonas de Fresnel (FZP). A las ventajas del bajo coste de estos reflectores se le añade la posibilidad de construir reflectores reconfigurables capaces de adaptarse a las características de radiación exigidas en diferentes aplicaciones, como las de superficies sin eco o invisibles a radares.