22 resultados para homogeneous Banach space of periodic functions
Resumo:
Let X be an in�finite-dimensional complex Banach space. Very recently, several results on the existence of entire functions on X bounded on a given ball B1 � X and unbounded on another given ball B2 � X have been obtained. In this paper we consider the problem of �finding entire functions which are uniformly bounded on a collection of balls and unbounded on the balls of some other collection. RESUMEN. Sea X un espacio de Banach complejo de dimensión infinita. En este trabajo, los autores estudian el problema de encontrar una función entera en X que esté uniformemente acotada en una colección de de bolas en X y que no esté acotada en las bolas de otra colección.
Resumo:
Let E be an infinite dimensional complex Banach space. We prove the existence of an infinitely generated algebra, an infinite dimensional closed subspace and a dense subspace of entire functions on E whose non-zero elements are functions of unbounded type. We also show that the τδ topology on the space of all holomorphic functions cannot be obtained as a countable inductive limit of Fr´echet spaces. RESUMEN. Sea E un espacio de Banach complejo de dimensión infinita y sea H(E) el espacio de funciones holomorfas definidas en E. En el artículo se demuestra la existencia de un álgebra infinitamente generada en H(E), un subespacio vectorial en H(E) cerrado de dimensión infinita y un subespacio denso en H(E) cuyos elementos no nulos son funciones de tipo no acotado. También se demuestra que el espacio de funciones holomorfas con la topología ? no es un límite inductivo numberable de espacios de Fréchet.
Resumo:
During the last few decades, new imaging techniques like X-ray computed tomography have made available rich and detailed information of the spatial arrangement of soil constituents, usually referred to as soil structure. Mathematical morphology provides a plethora of mathematical techniques to analyze and parameterize the geometry of soil structure. They provide a guide to design the process from image analysis to the generation of synthetic models of soil structure in order to investigate key features of flow and transport phenomena in soil. In this work, we explore the ability of morphological functions built over Minkowski functionals with parallel sets of the pore space to characterize and quantify pore space geometry of columns of intact soil. These morphological functions seem to discriminate the effects on soil pore space geometry of contrasting management practices in a Mediterranean vineyard, and they provide the first step toward identifying the statistical significance of the observed differences.
Resumo:
In this paper we prove that if U is an open subset of a metrizable locally convex space E of infinite dimension, the space H(U) of all holomorphic functions on U, endowed with the Nachbin–Coeuré topology τδ, is not metrizable. Our result can be applied to get that, for all usual topologies, H(U) is metrizable if and only if E has finite dimension. RESUMEN. En este artículo se demuestra que si U es un abierto en un espacio E localmente convexo metrizable de dimensión infinita y H(U) es el espacio de funciones holomorfas en U, entonces la topología de Nachbin-Coeuré en H(U) no es metrizable. Este resultado se utiliza para demostrar que las topologías habituales en H(U) son metrizables si y sólo si E tiene dimensión finita.
Resumo:
This paper contributes with a unified formulation that merges previ- ous analysis on the prediction of the performance ( value function ) of certain sequence of actions ( policy ) when an agent operates a Markov decision process with large state-space. When the states are represented by features and the value function is linearly approxi- mated, our analysis reveals a new relationship between two common cost functions used to obtain the optimal approximation. In addition, this analysis allows us to propose an efficient adaptive algorithm that provides an unbiased linear estimate. The performance of the pro- posed algorithm is illustrated by simulation, showing competitive results when compared with the state-of-the-art solutions.
Resumo:
The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. The main result in this paper is a very simple characterization of the hyperbolicity of a large class of periodic planar graphs.
Resumo:
The objective of this paper is to address the methodological process of a teaching strategy for training project management complexity in postgraduate programs. The proposal is made up of different methods —intuitive, comparative, deductive, case study, problem-solving Project-Based Learning— and different activities inside and outside the classroom. This integration of methods motivated the current use of the concept of “learning strategy”. The strategy has two phases: firstly, the integration of the competences —technical, behavioral and contextual—in real projects; and secondly, the learning activity was oriented in upper level of knowledge, the evaluating the complexity for projects management in real situations. Both the competences in the learning strategy and the Project Complexity Evaluation are based on the ICB of IPMA. The learning strategy is applied in an international Postgraduate Program —Erasmus Mundus Master of Science— with the participation of five Universities of the European Union. This master program is fruit of a cooperative experience from one Educative Innovation Group of the UPM -GIE-Project-, two Research Groups of the UPM and the collaboration with other external agents to the university. Some reflections on the experience and the main success factors in the learning strategy were presented in the paper
Resumo:
The objective of this paper is to address the methodological process of a teaching strategy for training project management complexity in postgraduate programs. The proposal is made up of different methods —intuitive, comparative, deductive, case study, problem-solving Project-Based Learning— and different activities inside and outside the classroom. This integration of methods motivated the current use of the concept of ―learning strategy‖. The strategy has two phases: firstly, the integration of the competences —technical, behavioral and contextual—in real projects; and secondly, the learning activity was oriented in upper level of knowledge, the evaluating the complexity for projects management in real situations. Both the competences in the learning strategy and the Project Complexity Evaluation are based on the ICB of IPMA. The learning strategy is applied in an international Postgraduate Program —Erasmus Mundus Master of Science— with the participation of five Universities of the European Union. This master program is fruit of a cooperative experience from one Educative Innovation Group of the UPM -GIE-Project-, two Research Groups of the UPM and the collaboration with other external agents to the university. Some reflections on the experience and the main success factors in the learning strategy were presented in the paper.
Resumo:
The fundamental objective of this Ph. D. dissertation is to demonstrate that, under particular circumstances which cover most of the structures with practical interest, periodic structures can be understood and analyzed by means of closed waveguide theories and techniques. To that aim, in the first place a transversely periodic cylindrical structure is considered and the wave equation, under a combination of perfectly conducting and periodic boundary conditions, is studied. This theoretical study runs parallel to the classic analysis of perfectly conducting closed waveguides. Under the light shed by the aforementioned study it is clear that, under certain very common periodicity conditions, transversely periodic cylindrical structures share a lot of properties with closed waveguides. Particularly, they can be characterized by a complete set of TEM, TE and TM modes. As a result, this Ph. D. dissertation introduces the transversely periodic waveguide concept. Once the analogies between the modes of a transversely periodic waveguide and the ones of a closed waveguide have been established, a generalization of a well-known closed waveguide characterization method, the generalized Transverse Resonance Technique, is developed for the obtention of transversely periodic modes. At this point, all the necessary elements for the consideration of discontinuities between two different transversely periodic waveguides are at our disposal. The analysis of this type of discontinuities will be carried out by means of another well known closed waveguide method, the Mode Matching technique. This Ph. D. dissertation contains a sufficient number of examples, including the analysis of a wire-medium slab, a cross-shaped patches periodic surface and a parallel plate waveguide with a textured surface, that demonstrate that the Transverse Resonance Technique - Mode Matching hybrid is highly precise, efficient and versatile. Thus, the initial statement: ”periodic structures can be understood and analyzed by means of closed waveguide theories and techniques”, will be corroborated. Finally, this Ph. D. dissertation contains an adaptation of the aforementioned generalized Transverse Resonance Technique by means of which the analysis of laterally open periodic waveguides, such as the well known Substrate Integrated Waveguides, can be carried out without any approximation. The analysis of this type of structures has suscitated a lot of interest in the recent past and the previous analysis techniques proposed always resorted to some kind of fictitious wall to close the structure. vii Resumen El principal objetivo de esta tesis doctoral es demostrar que, bajo ciertas circunstancias que se cumplen para la gran mayoría de estructuras con interés práctico, las estructuras periódicas se pueden analizar y entender con conceptos y técnicas propias de las guías de onda cerradas. Para ello, en un primer lugar se considera una estructura cilíndrical transversalmente periódica y se estudia la ecuación de onda bajo una combinación de condiciones de contorno periódicas y de conductor perfecto. Este estudio teórico y de caracter general, sigue el análisis clásico de las guías de onda cerradas por conductor eléctrico perfecto. A la luz de los resultados queda claro que, bajo ciertas condiciones de periodicidad (muy comunes en la práctica) las estructuras cilíndricas transversalmente periódicas guardan multitud de analogías con las guías de onda cerradas. En particular, pueden ser descritas mediante un conjunto completo de modos TEM, TE y TM. Por ello, ésta tesis introduce el concepto de guía de onda transversalmente periódica. Una vez establecidas las similitudes entre las soluciones de la ecuación de onda, bajo una combinación de condiciones de contorno periódicas y de conductor perfecto, y los modos de guías de onda cerradas, se lleva a cabo, con éxito, la adaptación de un conocido método de caracterización de guías de onda cerradas, la técnica de la Resonancia Transversal Generalizada, para la obtención de los modos de guías transversalmente periódicas. En este punto, se tienen todos los elementos necesarios para considerar discontinuidades entre guías de onda transversalmente periódicas. El analisis de este tipo de discontinuidades se llevará a cabo mediante otro conocido método de análisis de estructuras cerradas, el Ajuste Modal. Esta tesis muestra multitud de ejemplos, como por ejemplo el análisis de un wire-medium slab, una superficie de parches con forma de cruz o una guía de placas paralelas donde una de dichas placas tiene cierta textura, en los que se demuestra que el método híbrido formado por la Resonancia Transversal Generalizada y el Ajuste Modal, es tremendamente preciso, eficiente y versátil y confirmará la validez de el enunciado inicial: ”las estructuras periódicas se pueden analizar y entender con conceptos y técnicas propias de las guías de onda cerradas” Para terminar, esta tésis doctoral incluye también una modificación de la técnica de la Resonancia Transversal Generalizada mediante la cual es posible abordar el análisis de estructuras periódica abiertas en los laterales, como por ejemplo las famosas guías de onda integradas en sustrato, sin ninguna aproximación. El análisis de este tipo de estructuras ha despertado mucho interés en los últimos años y las técnicas de análisis propuestas hasta ix el momento acostumbran a recurrir a algún tipo de pared ficticia para simular el carácter abierto de la estructura.
Resumo:
In this work, the algebraic properties of the local transition functions of elementary cellular automata (ECA) were analysed. Specifically, a classification of such cellular automata was done according to their algebraic degree, the balancedness, the resiliency, nonlinearity, the propagation criterion and the existence of non-zero linear structures. It is shown that there is not any ECA satisfying all properties at the same time.
Resumo:
Rational invariants on the space of all structures of algebras on a two-dimensional vector space
Resumo:
The article shows a range of contemporary phenomena linked with urban space and the increasing citizens? interactivity in the network. The sources for theory and reflection are related to the ongoing research project ?Interactive Atlas of urban habitability" which is based on citizen participation in the sensitive description of the urban environment. It addresses a classification of variables related to the desires of urban habitability.
Resumo:
A method to study some neuronal functions, based on the use of the Feynman diagrams, employed in many-body theory, is reported. An equation obtained from the neuron cable theory is the basis for the method. The Green's function for this equation is obtained under some simple boundary conditions. An excitatory signal, with different conditions concerning high and pulse duration, is employed as input signal. Different responses have been obtained
Resumo:
Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished.
Resumo:
It is known that some orthogonal systems are mapped onto other orthogonal systems by the Fourier transform. In this article we introduce a finite class of orthogonal functions, which is the Fourier transform of Routh-Romanovski orthogonal polynomials, and obtain its orthogonality relation using Parseval identity.