25 resultados para flux of CO2
Resumo:
Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store the CO2 in deep saline aquifers at more than 800 m depth, because it achieves its supercritical state. Among the most important aspects concerning the performance assessment of a deep CO2 geological repository is the evaluation of the CO2 leakage rate from the chosen storage geological formation. Therefore, it is absolutely necessary to increase the knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths for CO2 and the physico-mechanical resistance of the sealing formation. Furthermore, the quantification of the CO2 leakage rate is essential to evaluate its effects on the environment. One way to achieve this objective is to study of CO2 leakage on natural analogue systems, because they can provide useful information about the natural performance of the CO2, which can be applied to an artificial CO2 geological storage. This work is focused on the retention capacity of the cap-rock by measuring the diffuse soil CO2 flux in a site selected based on: i) the presence of a natural and deep CO2 accumulation; ii) its structural geological characteristics; and iii) the nature of the cap-rocks. This site is located in the so-called Mazarrón-Gañuelas Tertiary Basin, in the Guadalentin Valley, province of Murcia (Spain) Therefore the main objective of this investigation has been to detect the possible leakages of CO2 from a deep saline aquifer to the surface in order to understand the capability of this area as a natural analogue for Carbon Capture and Sequestration (CCS). The results obtained allow to conclude that the geological sealing formation of the basin seems to be appropriate to avoid CO2 leakages from the storage formation.
Resumo:
In the framework of a global investigation of the Spanish natural analogues of CO2 storage and leakage, four selected sites from the Mazarrón?Gañuelas Tertiary Basin (Murcia, Spain) were studied for computing the diffuse soil CO2 flux, by using the accumulation chamber method. The Basin is characterized by the presence of a deep, saline, thermal (?47 ?C) CO2-rich aquifer intersected by two deep geothermal exploration wells named ?El Saladillo? (535 m) and ?El Reventón? (710 m). The CO2 flux data were processed by means of a graphical?statistical method, kriging estimation and sequential Gaussian simulation algorithms. The results have allowed concluding that the Tertiary marly cap-rock of this CO2-rich aquifer acts as a very effective sealing, preventing any CO2 leak from this natural CO2 storage site, being therefore an excellent scenario to guarantee, by analogy, the safety of a CO2 storage.
Resumo:
From the end of 2013 and during the following two years, 20 kt of CO2sc are planned to be injected in a saline reservoir (1500 m depth) at the Hontomín site (NE Spain). The target aquifers are Lower Jurassic limestone formations which are sealed by Lower Cretaceous clay units at the Hontomín site (NE Spain). The injection of CO2 is part of the activities committed in the Technology Development phase of the EC-funded OXYCFB300 project (European Energy Program for Recovery – EEPR, http://www.compostillaproject.eu), which include CO2 injection strategies, risk assessment, and testing and validating monitoring methodologies and techniques. Among the monitoring works, the project is intended to prove that present-day technology is able to monitor the evolution of injected CO2 in the reservoir and to detect potential leakage. One of the techniques is the measurement of CO2 flux at the soil–atmosphere interface, which includes campaigns before, during and after the injection operations. In this work soil CO2 flux measurements in the vicinity of oil borehole, drilled in the eighties and named H-1 to H-4, and injection and monitoring wells were performed using an accumulation chamber equipped with an IR sensor. Seven surveys were carried out from November 2009 to summer 2011. More than 4000 measurements were used to determine the baseline flux of CO2 and its seasonal variations. The measured values were low (from 5 to 13 g m−2 day−1) and few outliers were identified, mainly located close to the H-2 oil well. Nevertheless, these values cannot be associated to a deep source of CO2, being more likely related to biological processes, i.e. soil respiration. No anomalies were recognized close to the deep fault system (Ubierna Fault) detected by geophysical investigations. There, the CO2 flux is indeed as low as other measurement stations. CO2 fluxes appear to be controlled by the biological activity since the lowest values were recorded during autumn-winter seasons and they tend to increase in warm periods. Two reference CO2 flux values (UCL50 of 5 g m−2 d−1 for non-ploughed areas in autumn–winter seasons and 3.5 and 12 g m−2 d−1 for in ploughed and non-ploughed areas, respectively, in spring–summer time, and UCL99 of 26 g m−2 d−1 for autumn–winter in not-ploughed areas and 34 and 42 g m−2 d−1 for spring–summer in ploughed and not-ploughed areas, respectively) were calculated. Fluxes higher than these reference values could be indicative of possible leakage during the operational and post-closure stages of the storage project.
Resumo:
Coal is the most plentiful and evenly distributed fossil fuel worldwide. Based on current production, it is estimated that the reserves will last approximately 130 years. Its use worldwide has been increasing, mainly due to consumption by emerging countries. CO2 emissions generated by combustion and the repercussions of such on climate change support the view that it could no longer be used. CO2 capture may be the solution to continue using it, which would cater for the growing energy demand worldwide. The aim of this study is to compare different processes concerning CO2 capture that may be economically viable, ultimately showing that coal, a fossil energy source widely distributed around the world, can, as a result of using different CO2 capture processes, be used as a clean source of electricity. Hence, in places where geological hurdles may render the costs of CO2 storage considerably higher, since it might have to travel far, coal may be used for other purposes, thus valorising CO2 within the industrial sector. This research is focused on the technical and economic comparison of the most relevant CO2 capture projects designed in Spain using different existing technologies. The oxyfuel project in Ciuden (Leon, Spain), the IGCC Elcogas, precombustion CO2-capture project (Puertollano, Spain) and the postcombustion project in Carboneras (Almeria, Spain) will be analyzed in order to assess the options available to valorise captured CO2. Valorising captured CO2 may be an adequate solution in areas where, although CO2 capture is still possible, storage is not equally so, thus generating a further benefit. The possible uses of CO2 will be assessed in vegetable growing greenhouses, harnessing CO2 in vegetable life cycles. This will also be used in growing algae for subsequent biodiesel production. Both CO2 capture and valorising will eventually lead to the clean use of coal, which will thus enhance the level of self-supply, aiding the development of electric vehicles, which require large amounts of electricity, as well as improve the level of energy autonomy in countries around the world. Another type of fuel, biodiesel, will also be obtained, without this affecting international food prices.
Resumo:
Coal is the most plentiful and evenly distributed fossil fuel worldwide. Based on current production, it is estimated that the reserves will last approximately 130 years. Its use worldwide has been increasing, mainly due to consumption by emerging countries. CO2 emissions generated by combustion and the repercussions of such on climate change support the view that it could no longer be used. CO2 capture may be the solution to continue using it, which would cater for the growing energy demand worldwide. The aim of this study is to compare different processes concerning CO2 capture that may be economically viable, ultimately showing that coal, a fossil energy source widely distributed around the world, can, as a result of using different CO2 capture processes, be used as a clean source of electricity. Hence, in places where geological hurdles may render the costs of CO2 storage considerably higher, since it might have to travel far, coal may be used for other purposes, thus valorizing CO2 within the industrial sector. This research is focused on the technical and economic comparison of the most relevant CO2 capture projects designed in Spain using different existing technologies. The oxyfuel project in Ciuden (Leon, Spain), the IGCC Elcogas, precombustion CO2-capture project (Puertollano, Spain) and the postcombustion project in Carboneras (Almeria, Spain) will be analyzed in order to assess the options available to valorizecaptured CO2. Valorizing captured CO2 may be an adequate solution in areas where, although CO2 capture is still possible, storage is not equally so, thus generating a further benefit. The possible uses of CO2 will be assessed in vegetable growing greenhouses, harnessing CO2 in vegetable life cycles. This will also be used in growing algae for subsequent biodiesel production. Both CO2capture and valorizing will eventually lead to the clean use of coal, which will thus enhance the level of self-supply, aiding the development of electric vehicles, which require large amounts of electricity, as well as improve the level of energy autonomy in countries around the world. Another type of fuel, biodiesel, will also be obtained, without this affecting international food prices.
Resumo:
Greenhouse gas emission reduction is the pillar of the Kyoto Protocol and one of the main goals of the European Union (UE) energy policy. National reduction targets for EU member states and an overall target for the EU-15 (8%) were set by the Kyoto Protocol. This reduction target is based on emissions in the reference year (1990) and must be reached by 2012. EU energy policy does not set any national targets, only an overall reduction target of 20% by 2020. This paper transfers global greenhouse gas emission reduction targets in both these documents to the transport sector and specifically to CO2 emissions. It proposes a nonlinear distribution method with objective, dynamic targets for reducing CO2 emissions in the transport sector, according to the context and characteristics of each geographical area. First, we analyse CO2 emissions from transport in the reference year (1990) and their evolution from 1990 to 2007. We then propose a nonlinear methodology for distributing dynamic CO2 emission reduction targets. We have applied the proposed distribution function for 2012 and 2020 at two territorial levels (EU member states and Spanish autonomous regions). The weighted distribution is based on per capita CO2 emissions and CO2 emissions per gross domestic product. Finally, we show the weighted targets found for each EU member state and each Spanish autonomous region, compare them with the real achievements to date, and forecast the situation for the years the Kyoto and EU goals are to be met. The results underline the need for ?weighted? decentralised decisions to be made at different territorial levels with a view to achieving a common goal, so relative convergence of all the geographical areas is reached over time. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
There is strong evidence to indicate that carbon dioxide and other greenhouse gases are accumulating at unprecedented concentrations in out atmosphere contributing to global climate change. Evidence is equally strong that human activities, mainly the burning of fossil fuels, are driving force in this process (IPCC 2007). While different industries contribute varying amounts to total anthropogenic greenhouse gases, it is incumbent upon each to understand its contribution and search for sensible ways to reduce overall greenhouse gas production. The aim of this paper is the development of a methodology to determine the amount of CO2 emissions of a highway, allowing providing solutions that can improve the energy footprint and reduce its emissions
Resumo:
This research has been performed to emphasize about the problem known as ?climate changes? occurring due to the greenhouse gases emissions (Carbon dioxide (CO2), Methane (CH4),Nitrogen oxides (NOx), Ozone (O3), Chlorofluorocarbons (artificial). Specially, the project will be focused on the CO2 emissions produced mainly from the fossil fuels burning in power plants and other kind of industrial processes. To understand how important the global is warming and therefore the climate change, both the increase of emissions and the evolution of those will be studied in this project drawing conclusions about its effect. The Kyoto Protocol, the most important agreement internationally, signed by a great majority of the industrialized and developed countries, which try to limit the CO2 emissions to the atmosphere, will be cited in this project. Taking into account the effects of global warming and applying the international legislation on emissions of greenhouse gases, a number of measures will be exposed, where the CO2 capture will be studied deeply. Three different kind of CO2 capture technologies will be studied, drawing the conclusion that the post-combustion capture, in particular by amine chemical absorption, is the most efficient one.
Resumo:
La Fundación Ciudad de la Energía (CIUDEN) está desarrollando un proyecto de almacenamiento geológico de CO2. El área seleccionada para la colocación de la planta piloto de desarrollo tecnológico se encuentra en las proximidades de la localidad de Hontomín (Burgos, España). Dentro de los objetivos de este proyecto se encuentra el desarrollo y puesta a punto de una metodología no intrusiva/invasiva que permita mejorar el conocimiento de formaciones geológicas a partir del registro en superficie de la emisión de gases de origen natural. Para cumplir con parte de este objetivo, se ha realizado un estudio de los flujos y de la relación entre las actividades de radón (222Rn) y torón (220Rn) asociados a flujos altos de CO2. El área de estudio se encuentra en la zona volcánica de Campo de Calatrava de la provincia de Ciudad Real en España. Dado que los flujos muy altos (566 a 2011 g/m2•dia) de CO2 son puntuales en el emplazamiento de estudio, éstos podrían equipararse a escapes puntuales en zonas de debilidad de un almacenamiento comercial de CO2. Los resultados obtenidos indican que los flujos altos de CO2 conllevan actividades muy altas de 222Rn (118398 Bq/m3), y altas relaciones radón-torón, ya que se observa una disminución de las concentraciones de torón. Abstract The Fundación Ciudad de la Energía (CIUDEN) is presently developing a project of geological storage of CO2. The selected area is close to Hontomín town (Burgos, Spain). One of the aim objectives of this project is the development and testing of a non-intrusive/invasive methodology to improve our knowledge of geological formations from the surface record of the emission of soil gas. To meet part of this goal, a survey of 222Rn and 220Rn measurements has been performed at a site called La Sima, located in volcanic area of Campo de Calatrava (Ciudad Real, Spain) which is characterized by high fluxes of CO2 (566 a 2011 g/m2•dia). These high, point-source fluxes can be considered as analogues of potential leakages in commercial storages. The obtained results show a clear correlation between high flux of CO2 and very high activities of 222Rn (118398 Bq/m3). In contrast, activity of 220Rn is significantly low and consequently high ratios of radon-thoron are measured.
Resumo:
La Universidad Politécnica de Madrid (UPM) y la Università degli Studi di Firenze (UniFi), bajo la coordinación técnica de AMPHOS21, participan desde 2009 en el proyecto de investigación “Estrategias de Monitorización de CO2 y otros gases en el estudio de Análogos Naturales”, financiado por la Fundación Ciudad de la Energía (CIUDEN) en el marco del Proyecto Compostilla OXYCFB300 (http://www.compostillaproject.eu), del Programa “European Energy Program for Recovery - EEPR”. El objetivo principal del proyecto fue el desarrollo y puesta a punto de metodologías de monitorización superficiales para su aplicación en el seguimiento y control de los emplazamientos donde se realice el almacenamiento geológico de CO2, analizando técnicas que permitan detectar y cuantificar las posibles fugas de CO2 a la atmósfera. Los trabajos se realizaron tanto en análogos naturales (españoles e italianos) como en la Planta de Desarrollo Tecnológico de Almacenamiento de CO2 de Hontomín. Las técnicas analizadas se centran en la medición de gases y aguas superficiales (de escorrentía y manantiales). En cuanto a la medición de gases se analizó el flujo de CO2 que emana desde el suelo a la atmósfera y la aplicabilidad de trazadores naturales (como el radón) para la detección e identificación de las fugas de CO2. En cuanto al análisis químico de las aguas se analizaron los datos geoquímicos e isotópicos y los gases disueltos en las aguas de los alrededores de la PDT de Hontomín, con objeto de determinar qué parámetros son los más apropiados para la detección de una posible migración del CO2 inyectado, o de la salmuera, a los ambientes superficiales. Las medidas de flujo de CO2 se realizaron con la técnica de la cámara de acúmulo. A pesar de ser una técnica desarrollada y aplicada en diferentes ámbitos científicos se estimó necesario adaptar un protocolo de medida y de análisis de datos a las características específicas de los proyectos de captura y almacenamiento de CO2 (CAC). Donde los flujos de CO2 esperados son bajos y en caso de producirse una fuga habrá que detectar pequeñas variaciones en los valores flujo con un “ruido” en la señal alto, debido a actividad biológica en el suelo. La medida de flujo de CO2 mediante la técnica de la cámara de acúmulo se puede realizar sin limpiar la superficie donde se coloca la cámara o limpiando y esperando al reequilibrio del flujo después de la distorsión al sistema. Sin embargo, los resultados obtenidos después de limpiar y esperar muestran menor dispersión, lo que nos indica que este procedimiento es el mejor para la monitorización de los complejos de almacenamiento geológico de CO2. El protocolo de medida resultante, utilizado para la obtención de la línea base de flujo de CO2 en Hontomín, sigue los siguiente pasos: a) con una espátula se prepara el punto de medición limpiando y retirando el recubrimiento vegetal o la primera capa compacta de suelo, b) se espera un tiempo para la realización de la medida de flujo, facilitando el reequilibrio del flujo del gas tras la alteración provocada en el suelo y c) se realiza la medida de flujo de CO2. Una vez realizada la medición de flujo de CO2, y detectada si existen zonas de anomalías, se debe estimar la cantidad de CO2 que se está escapando a la atmósfera (emanación total), con el objetivo de cuantificar la posible fuga. Existen un amplio rango de metodologías para realizar dicha estimación, siendo necesario entender cuáles son las más apropiadas para obtener el valor más representativo del sistema. En esta tesis se comparan seis técnicas estadísticas: media aritmética, estimador insegado de la media (aplicando la función de Sichel), remuestreo con reemplazamiento (bootstrap), separación en diferentes poblaciones mediante métodos gráficos y métodos basados en criterios de máxima verosimilitud, y la simulación Gaussiana secuencial. Para este análisis se realizaron ocho campañas de muestreo, tanto en la Planta de Desarrollo Tecnológico de Hontomón como en análogos naturales (italianos y españoles). Los resultados muestran que la simulación Gaussiana secuencial suele ser el método más preciso para realizar el cálculo, sin embargo, existen ocasiones donde otros métodos son más apropiados. Como consecuencia, se desarrolla un procedimiento de actuación para seleccionar el método que proporcione el mejor estimador. Este procedimiento consiste, en primer lugar, en realizar un análisis variográfico. Si existe una autocorrelación entre los datos, modelizada mediante el variograma, la mejor técnica para calcular la emanación total y su intervalo de confianza es la simulación Gaussiana secuencial (sGs). Si los datos son independientes se debe comprobar la distribución muestral, aplicando la media aritmética o el estimador insesgado de la media (Sichel) para datos normales o lognormales respectivamente. Cuando los datos no son normales o corresponden a una mezcla de poblaciones la mejor técnica de estimación es la de remuestreo con reemplazamiento (bootstrap). Siguiendo este procedimiento el máximo valor del intervalo de confianza estuvo en el orden del ±20/25%, con la mayoría de valores comprendidos entre ±3,5% y ±8%. La identificación de las diferentes poblaciones muestrales en los datos de flujo de CO2 puede ayudar a interpretar los resultados obtenidos, toda vez que esta distribución se ve afectada por la presencia de varios procesos geoquímicos como, por ejemplo, una fuente geológica o biológica del CO2. Así pues, este análisis puede ser una herramienta útil en el programa de monitorización, donde el principal objetivo es demostrar que no hay fugas desde el reservorio a la atmósfera y, si ocurren, detectarlas y cuantificarlas. Los resultados obtenidos muestran que el mejor proceso para realizar la separación de poblaciones está basado en criterios de máxima verosimilitud. Los procedimientos gráficos, aunque existen pautas para realizarlos, tienen un cierto grado de subjetividad en la interpretación de manera que los resultados son menos reproducibles. Durante el desarrollo de la tesis se analizó, en análogos naturales, la relación existente entre el CO2 y los isótopos del radón (222Rn y 220Rn), detectándose en todas las zonas de emisión de CO2 una relación positiva entre los valores de concentración de 222Rn en aire del suelo y el flujo de CO2. Comparando la concentración de 220Rn con el flujo de CO2 la relación no es tan clara, mientras que en algunos casos aumenta en otros se detecta una disminución, hecho que parece estar relacionado con la profundidad de origen del radón. Estos resultados confirmarían la posible aplicación de los isótopos del radón como trazadores del origen de los gases y su aplicación en la detección de fugas. Con respecto a la determinación de la línea base de flujo CO2 en la PDT de Hontomín, se realizaron mediciones con la cámara de acúmulo en las proximidades de los sondeos petrolíferos, perforados en los ochenta y denominados H-1, H-2, H-3 y H-4, en la zona donde se instalarán el sondeo de inyección (H-I) y el de monitorización (H-A) y en las proximidades de la falla sur. Desde noviembre de 2009 a abril de 2011 se realizaron siete campañas de muestreo, adquiriéndose más de 4.000 registros de flujo de CO2 con los que se determinó la línea base y su variación estacional. Los valores obtenidos fueron bajos (valores medios entre 5 y 13 g•m-2•d-1), detectándose pocos valores anómalos, principalmente en las proximidades del sondeo H-2. Sin embargo, estos valores no se pudieron asociar a una fuente profunda del CO2 y seguramente estuvieran más relacionados con procesos biológicos, como la respiración del suelo. No se detectaron valores anómalos cerca del sistema de fracturación (falla Ubierna), toda vez que en esta zona los valores de flujo son tan bajos como en el resto de puntos de muestreo. En este sentido, los valores de flujo de CO2 aparentemente están controlados por la actividad biológica, corroborado al obtenerse los menores valores durante los meses de otoño-invierno e ir aumentando en los periodos cálidos. Se calcularon dos grupos de valores de referencia, el primer grupo (UCL50) es 5 g•m-2•d-1 en las zonas no aradas en los meses de otoño-invierno y 3,5 y 12 g•m-2•d-1 en primavera-verano para zonas aradas y no aradas, respectivamente. El segundo grupo (UCL99) corresponde a 26 g•m-2•d- 1 durante los meses de otoño-invierno en las zonas no aradas y 34 y 42 g•m-2•d-1 para los meses de primavera-verano en zonas aradas y no aradas, respectivamente. Flujos mayores a estos valores de referencia podrían ser indicativos de una posible fuga durante la inyección y posterior a la misma. Los primeros datos geoquímicos e isotópicos de las aguas superficiales (de escorrentía y de manantiales) en el área de Hontomín–Huermeces fueron analizados. Los datos sugieren que las aguas estudiadas están relacionadas con aguas meteóricas con un circuito hidrogeológico superficial, caracterizadas por valores de TDS relativamente bajos (menor a 800 mg/L) y una fácie hidrogeoquímica de Ca2+(Mg2+)-HCO3 −. Algunas aguas de manantiales se caracterizan por concentraciones elevadas de NO3 − (concentraciones de hasta 123 mg/l), lo que sugiere una contaminación antropogénica. Se obtuvieron concentraciones anómalas de of Cl−, SO4 2−, As, B y Ba en dos manantiales cercanos a los sondeos petrolíferos y en el rio Ubierna, estos componentes son probablemente indicadores de una posible mezcla entre los acuíferos profundos y superficiales. El estudio de los gases disueltos en las aguas también evidencia el circuito superficial de las aguas. Estando, por lo general, dominado por la componente atmosférica (N2, O2 y Ar). Sin embargo, en algunos casos el gas predominante fue el CO2 (con concentraciones que llegan al 63% v/v), aunque los valores isotópicos del carbono (<-17,7 ‰) muestran que lo más probable es que esté relacionado con un origen biológico. Los datos geoquímicos e isotópicos de las aguas superficiales obtenidos en la zona de Hontomín se pueden considerar como el valor de fondo con el que comparar durante la fase operacional, la clausura y posterior a la clausura. En este sentido, la composición de los elementos mayoritarios y traza, la composición isotópica del carbono del CO2 disuelto y del TDIC (Carbono inorgánico disuelto) y algunos elementos traza se pueden considerar como parámetros adecuados para detectar la migración del CO2 a los ambientes superficiales. ABSTRACT Since 2009, a group made up of Universidad Politécnica de Madrid (UPM; Spain) and Università degli Studi Firenze (UniFi; Italy) has been taking part in a joint project called “Strategies for Monitoring CO2 and other Gases in Natural analogues”. The group was coordinated by AMPHOS XXI, a private company established in Barcelona. The Project was financially supported by Fundación Ciudad de la Energía (CIUDEN; Spain) as a part of the EC-funded OXYCFB300 project (European Energy Program for Recovery -EEPR-; www.compostillaproject.eu). The main objectives of the project were aimed to develop and optimize analytical methodologies to be applied at the surface to Monitor and Verify the feasibility of geologically stored carbon dioxide. These techniques were oriented to detect and quantify possible CO2 leakages to the atmosphere. Several investigations were made in natural analogues from Spain and Italy and in the Tecnchnological Development Plant for CO2 injection al Hontomín (Burgos, Spain). The studying techniques were mainly focused on the measurements of diffuse soil gases and surface and shallow waters. The soil-gas measurements included the determination of CO2 flux and the application to natural trace gases (e.g. radon) that may help to detect any CO2 leakage. As far as the water chemistry is concerned, geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of the PDT of Hontomín were analyzed to determine the most suitable parameters to trace the migration of the injected CO2 into the near-surface environments. The accumulation chamber method was used to measure the diffuse emission of CO2 at the soil-atmosphere interface. Although this technique has widely been applied in different scientific areas, it was considered of the utmost importance to adapt the optimum methodology for measuring the CO2 soil flux and estimating the total CO2 output to the specific features of the site where CO2 is to be stored shortly. During the pre-injection phase CO2 fluxes are expected to be relatively low where in the intra- and post-injection phases, if leakages are to be occurring, small variation in CO2 flux might be detected when the CO2 “noise” is overcoming the biological activity of the soil (soil respiration). CO2 flux measurements by the accumulation chamber method could be performed without vegetation clearance or after vegetation clearance. However, the results obtained after clearance show less dispersion and this suggests that this procedure appears to be more suitable for monitoring CO2 Storage sites. The measurement protocol, applied for the determination of the CO2 flux baseline at Hontomín, has included the following steps: a) cleaning and removal of both the vegetal cover and top 2 cm of soil, b) waiting to reduce flux perturbation due to the soil removal and c) measuring the CO2 flux. Once completing the CO2 flux measurements and detected whether there were anomalies zones, the total CO2 output was estimated to quantify the amount of CO2 released to the atmosphere in each of the studied areas. There is a wide range of methodologies for the estimation of the CO2 output, which were applied to understand which one was the most representative. In this study six statistical methods are presented: arithmetic mean, minimum variances unbiased estimator, bootstrap resample, partitioning of data into different populations with a graphical and a maximum likelihood procedures, and sequential Gaussian simulation. Eight campaigns were carried out in the Hontomín CO2 Storage Technology Development Plant and in natural CO2 analogues. The results show that sequential Gaussian simulation is the most accurate method to estimate the total CO2 output and the confidential interval. Nevertheless, a variety of statistic methods were also used. As a consequence, an application procedure for selecting the most realistic method was developed. The first step to estimate the total emanation rate was the variogram analysis. If the relation among the data can be explained with the variogram, the best technique to calculate the total CO2 output and its confidence interval is the sequential Gaussian simulation method (sGs). If the data are independent, their distribution is to be analyzed. For normal and log-normal distribution the proper methods are the arithmetic mean and minimum variances unbiased estimator, respectively. If the data are not normal (log-normal) or are a mixture of different populations the best approach is the bootstrap resampling. According to these steps, the maximum confidence interval was about ±20/25%, with most of values between ±3.5% and ±8%. Partitioning of CO2 flux data into different populations may help to interpret the data as their distribution can be affected by different geochemical processes, e.g. geological or biological sources of CO2. Consequently, it may be an important tool in a monitoring CCS program, where the main goal is to demonstrate that there are not leakages from the reservoir to the atmosphere and, if occurring, to be able to detect and quantify it. Results show that the partitioning of populations is better performed by maximum likelihood criteria, since graphical procedures have a degree of subjectivity in the interpretation and results may not be reproducible. The relationship between CO2 flux and radon isotopes (222Rn and 220Rn) was studied in natural analogues. In all emissions zones, a positive relation between 222Rn and CO2 was observed. However, the relationship between activity of 220Rn and CO2 flux is not clear. In some cases the 220Rn activity indeed increased with the CO2 flux in other measurements a decrease was recognized. We can speculate that this effect was possibly related to the route (deep or shallow) of the radon source. These results may confirm the possible use of the radon isotopes as tracers for the gas origin and their application in the detection of leakages. With respect to the CO2 flux baseline at the TDP of Hontomín, soil flux measurements in the vicinity of oil boreholes, drilled in the eighties and named H-1 to H-4, and injection and monitoring wells were performed using an accumulation chamber. Seven surveys were carried out from November 2009 to summer 2011. More than 4,000 measurements were used to determine the baseline flux of CO2 and its seasonal variations. The measured values were relatively low (from 5 to 13 g•m-2•day-1) and few outliers were identified, mainly located close to the H-2 oil well. Nevertheless, these values cannot be associated to a deep source of CO2, being more likely related to biological processes, i.e. soil respiration. No anomalies were recognized close to the deep fault system (Ubierna Fault) detected by geophysical investigations. There, the CO2 flux is indeed as low as other measurement stations. CO2 fluxes appear to be controlled by the biological activity since the lowest values were recorded during autumn-winter seasons and they tend to increase in warm periods. Two reference CO2 flux values (UCL50 of 5 g•m-2•d-1 for non-ploughed areas in autumn-winter seasons and 3.5 and 12 g•m-2•d-1 for in ploughed and non-ploughed areas, respectively, in spring-summer time, and UCL99 of 26 g•m-2•d-1 for autumn-winter in not-ploughed areas and 34 and 42 g•m-2•d-1 for spring-summer in ploughed and not-ploughed areas, respectively, were calculated. Fluxes higher than these reference values could be indicative of possible leakage during the operational and post-closure stages of the storage project. The first geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of Hontomín–Huermeces (Burgos, Spain) are presented and discussed. The chemical and features of the spring waters suggest that they are related to a shallow hydrogeological system as the concentration of the Total Dissolved Solids approaches 800 mg/L with a Ca2+(Mg2+)-HCO3 − composition, similar to that of the surface waters. Some spring waters are characterized by relatively high concentrations of NO3 − (up to 123 mg/L), unequivocally suggesting an anthropogenic source. Anomalous concentrations of Cl−, SO4 2−, As, B and Ba were measured in two springs, discharging a few hundred meters from the oil wells, and in the Rio Ubierna. These contents are possibly indicative of mixing processes between deep and shallow aquifers. The chemistry of the dissolved gases also evidences the shallow circuits of the Hontomín– Huermeces, mainly characterized by an atmospheric source as highlighted by the contents of N2, O2, Ar and their relative ratios. Nevertheless, significant concentrations (up to 63% by vol.) of isotopically negative CO2 (<−17.7‰ V-PDB) were found in some water samples, likely related to a biogenic source. The geochemical and isotopic data of the surface and spring waters in the surroundings of Hontomín can be considered as background values when intra- and post-injection monitoring programs will be carried out. In this respect, main and minor solutes, the isotopic carbon of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) and selected trace elements can be considered as useful parameters to trace the migration of the injected CO2 into near-surface environments.
Resumo:
The complexity of climate change and its evolution during the last few years has a positive impact on new developments and approaches to reduce the emissions of CO2. Looking for a methodology to evaluate the sustainability of a roadway, a tool has been developed. Life Cycle Assessment (LCA) is being accepted by the road industry to measure and evaluate the environmental impacts of an infrastructure, as the energy consumption and carbon footprint. This paper describes the methodology to calculate the CO2 emissions associated with the energy embodied on a roadway along its life cycle, including construction, operations and demolition. It will assist to find solutions to improve the energy footprint and reduce the amount of CO2 emissions. Details are provided of both, the methodology and the data acquisition. This paper is an application of the methodology to the Spanish highways, using a local database. Two case studies and a practical example are studied to show the model as a decision support for sustainable construction in the road industry.
Resumo:
Fundación Ciudad de la Energía (CIUDEN) is carrying out a project of geological storage of CO2, where CO2 injection tests are planned in saline aquifers at a depth of 1500 m for scientific objectives and project demonstration. Before any CO2 is stored, it is necessary to determine the baseline flux of CO2 in order to detect potential leakage during injection and post-injection monitoring. In November 2009 diffuse flux measurements of CO2 using an accumulation chamber were made in the area selected by CIUDEN for geological storage, located in Hontomin province of Burgos (Spain). This paper presents the tests carried out in order to establish the optimum sampling methodology and the geostatistical analyses performed to determine the range, with which future field campaigns will be planned.
Resumo:
Fundación Ciudad de la Energía (CIUDEN) is carrying out a project of geological storage of CO2, where CO2 injection tests are planned in saline aquifers at a depth of 1500 m for scientific objectives and project demonstration. Before any CO2 is stored, it is necessary to determine the baseline flux of CO2 in order to detect potential leakage during injection and post-injection monitoring. In November 2009 diffuse flux measurements of CO2 using an accumulationchamber were made in the area selected by CIUDEN for geological storage, located in Hontomin province of Burgos (Spain). This paper presents the tests carried out in order to establish the optimum sampling methodology and the geostatistical analyses performed to determine the range, with which future field campaigns will be planned.
Resumo:
Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store CO2 in deep saline aquifers at more than 800m depth, because it reaches its supercritical state. Study of the CO2 natural accumulations as natural analogues of an artificial CO2 storage is very useful in order to understand the CO2 long term behaviour and thus to predict its possible impact on the surficial environment and life. Therefore the main objective of this work is to detect the affection of the CO2 leakages from a deep saline aquifer on the shallow aquifers, all of them located in the Gañuelas-Mazarrón Tertiary basin (Province of Murcia, Spain). This CO2 storage and leakage natural system can be analogous to an artificial CO2 storage with leakage phenomena. In order to reach these objectives, groundwaters from different aquifers in the site have been sampled and analysed for major elements, free and dissolved gases and stable isotopes, particularly ∂ 13 C and 3 He/ 4 He. The results obtained allow to conclude that this natural system is an interesting example of natural analogue for an artificial CO2 storage affected by leakage processes because the shallow fresh aquifers in the site are polluted by CO2 from the deep saline aquifer as a consequence of an intensive over-exploitation of these freshwater aquifers
Resumo:
In the present uncertain global context of reaching an equal social stability and steady thriving economy, power demand expected to grow and global electricity generation could nearly double from 2005 to 2030. Fossil fuels will remain a significant contribution on this energy mix up to 2050, with an expected part of around 70% of global and ca. 60% of European electricity generation. Coal will remain a key player. Hence, a direct effect on the considered CO2 emissions business-as-usual scenario is expected, forecasting three times the present CO2 concentration values up to 1,200ppm by the end of this century. Kyoto protocol was the first approach to take global responsibility onto CO2 emissions monitoring and cap targets by 2012 with reference to 1990. Some of principal CO2emitters did not ratify the reduction targets. Although USA and China spur are taking its own actions and parallel reduction measures. More efficient combustion processes comprising less fuel consuming, a significant contribution from the electricity generation sector to a CO2 dwindling concentration levels, might not be sufficient. Carbon Capture and Storage (CCS) technologies have started to gain more importance from the beginning of the decade, with research and funds coming out to drive its come in useful. After first researching projects and initial scale testing, three principal capture processes came out available today with first figures showing up to 90% CO2 removal by its standard applications in coal fired power stations. Regarding last part of CO2 reduction chain, two options could be considered worthy, reusing (EOR & EGR) and storage. The study evaluates the state of the CO2 capture technology development, availability and investment cost of the different technologies, with few operation cost analysis possible at the time. Main findings and the abatement potential for coal applications are presented. DOE, NETL, MIT, European universities and research institutions, key technology enterprises and utilities, and key technology suppliers are the main sources of this study. A vision of the technology deployment is presented.