22 resultados para disciplinary procedures
Resumo:
A particle accelerator is any device that, using electromagnetic fields, is able to communicate energy to charged particles (typically electrons or ionized atoms), accelerating and/or energizing them up to the required level for its purpose. The applications of particle accelerators are countless, beginning in a common TV CRT, passing through medical X-ray devices, and ending in large ion colliders utilized to find the smallest details of the matter. Among the other engineering applications, the ion implantation devices to obtain better semiconductors and materials of amazing properties are included. Materials supporting irradiation for future nuclear fusion plants are also benefited from particle accelerators. There are many devices in a particle accelerator required for its correct operation. The most important are the particle sources, the guiding, focalizing and correcting magnets, the radiofrequency accelerating cavities, the fast deflection devices, the beam diagnostic mechanisms and the particle detectors. Most of the fast particle deflection devices have been built historically by using copper coils and ferrite cores which could effectuate a relatively fast magnetic deflection, but needed large voltages and currents to counteract the high coil inductance in a response in the microseconds range. Various beam stability considerations and the new range of energies and sizes of present time accelerators and their rings require new devices featuring an improved wakefield behaviour and faster response (in the nanoseconds range). This can only be achieved by an electromagnetic deflection device based on a transmission line. The electromagnetic deflection device (strip-line kicker) produces a transverse displacement on the particle beam travelling close to the speed of light, in order to extract the particles to another experiment or to inject them into a different accelerator. The deflection is carried out by the means of two short, opposite phase pulses. The diversion of the particles is exerted by the integrated Lorentz force of the electromagnetic field travelling along the kicker. This Thesis deals with a detailed calculation, manufacturing and test methodology for strip-line kicker devices. The methodology is then applied to two real cases which are fully designed, built, tested and finally installed in the CTF3 accelerator facility at CERN (Geneva). Analytical and numerical calculations, both in 2D and 3D, are detailed starting from the basic specifications in order to obtain a conceptual design. Time domain and frequency domain calculations are developed in the process using different FDM and FEM codes. The following concepts among others are analyzed: scattering parameters, resonating high order modes, the wakefields, etc. Several contributions are presented in the calculation process dealing specifically with strip-line kicker devices fed by electromagnetic pulses. Materials and components typically used for the fabrication of these devices are analyzed in the manufacturing section. Mechanical supports and connexions of electrodes are also detailed, presenting some interesting contributions on these concepts. The electromagnetic and vacuum tests are then analyzed. These tests are required to ensure that the manufactured devices fulfil the specifications. Finally, and only from the analytical point of view, the strip-line kickers are studied together with a pulsed power supply based on solid state power switches (MOSFETs). The solid state technology applied to pulsed power supplies is introduced and several circuit topologies are modelled and simulated to obtain fast and good flat-top pulses.
Resumo:
Inside COBRA 2011 RICS International Research Conference, the present paper is linked to analyze the liability of the construction professional in his practice as a expert witness in the Spanish legal framework. In a large number of legal procedures related to the building it is necessary the intervention of the expert witness to report on the subject of litigation, and to give an opinion about possible causes and solutions. This field is increasingly importantly for the practice of construction professional that requires an important specialization. The expert provides his knowledge to the judge in the matter he is dealing with (construction, planning, assessment, legal, ...), providing arguments or reasons as the base for his case and acting as part of the evidence. Although the importance of expert intervention in the judicial process, the responsibilities arising from their activity is a slightly studied field. Therefore, the study has as purpose to think about the regulation of professional activities raising different aims. The first is to define the action of the construction professional-expert witness and the need for expert evidence, establishing the legal implications of this professional activity. The different types of responsibilities (the civil, criminal and administrative) have been established as well as the economic, penal or disciplinary damages that can be derived from the expert report
Resumo:
In the Standard EHE 08, for the first time, durability acquires the status of Limit State. Article 8 provides that the term Durability limit state, produced by physical and chemical actions, different loads and actions of structural analysis, which can degrade the concrete and reinforcement to unacceptable limits. The verification of this limit state can be done through a procedure set out in the provisions of the Standard. This procedure is based on the use of tables that, depending on the aggressiveness of the environment in which the structure is the concrete strength and the life of the project, setting the quality of the concrete cover (minimum thickness and maximum water cement ratio of concrete used) and the maximum crack width. This procedure, simple in its application, provides highly secure solutions. In addition, on Annex 9, the Standard EHE 08 offers models for testing the durability limit state in cases of corrosion of reinforcement due to carbonation of concrete or entry of chloride ions. The results obtained with these models are tighter than those obtained with the procedure of the articles. In this paper we use both methods in the study of reinforced concrete structures with potential problems of corrosion of reinforcement due to carbonation of concrete. Later checking the results obtained by both procedures. Results demonstrate that the use of the models listed in Annex 9 of Standard EHE 08 offer cheaper solutions than those obtained using the procedure of the articles
Resumo:
Considering the measurement procedures recommended by the ICNIRP, this communication is a proposal for a measurement procedure based in the maximum peak values of equivalent plane wave power density. This procedure has been included in a project being developed in Leganés, Spain. The project plans to deploy a real time monitoring system for RF to provide the city with a useful tool to adapt the environmental EM conditions to the new regulations approved. A first stage consisting of 105 measurement points has been finished and all the values are under the threshold of the regulation.
Resumo:
—Microarray-based global gene expression profiling, with the use of sophisticated statistical algorithms is providing new insights into the pathogenesis of autoimmune diseases. We have applied a novel statistical technique for gene selection based on machine learning approaches to analyze microarray expression data gathered from patients with systemic lupus erythematosus (SLE) and primary antiphospholipid syndrome (PAPS), two autoimmune diseases of unknown genetic origin that share many common features. The methodology included a combination of three data discretization policies, a consensus gene selection method, and a multivariate correlation measurement. A set of 150 genes was found to discriminate SLE and PAPS patients from healthy individuals. Statistical validations demonstrate the relevance of this gene set from an univariate and multivariate perspective. Moreover, functional characterization of these genes identified an interferon-regulated gene signature, consistent with previous reports. It also revealed the existence of other regulatory pathways, including those regulated by PTEN, TNF, and BCL-2, which are altered in SLE and PAPS. Remarkably, a significant number of these genes carry E2F binding motifs in their promoters, projecting a role for E2F in the regulation of autoimmunity.
Resumo:
This paper presents a conditional parallelization process for and-parallelism based on the notion of non-strict independence, a more relaxed notion than the traditional of strict independence. By using this notion, a parallelism annotator can extract more parallelism from programs. On the other hand, the intrinsic complexity of non-strict independence poses new challenges to this task. We report here on the implementation we have accomplished of an annotator for non-strict independence, capable of producing both static and dynamic execution graphs. This implementation, along with the also implemented independence checker and their integration in our system, have resulted what is, to the best of our knowledge, the first parallelizing compiler based on nonstrict independence which produces dynamic execution graphs. The paper also presents a preliminary assessment of the implemented tools, comparing them with the existing ones for strict independence, which shows encouraging results.
Resumo:
Finite element hp-adaptivity is a technology that allows for very accurate numerical solutions. When applied to open region problems such as radar cross section prediction or antenna analysis, a mesh truncation method needs to be used. This paper compares the following mesh truncation methods in the context of hp-adaptive methods: Infinite Elements, Perfectly Matched Layers and an iterative boundary element based methodology. These methods have been selected because they are exact at the continuous level (a desirable feature required by the extreme accuracy delivered by the hp-adaptive strategy) and they are easy to integrate with the logic of hp-adaptivity. The comparison is mainly based on the number of degrees of freedom needed for each method to achieve a given level of accuracy. Computational times are also included. Two-dimensional examples are used, but the conclusions directly extrapolated to the three dimensional case.
Resumo:
Woolliness, a negative attribute of sensory texture, is characterised by the lack of juiciness without variation of the tissue water content an incapacity of ripening although there is external ripe appearance. In this study, peaches cv Springcrest (early and soft flesh peaches) and Miraflores (late and hard flesh peaches) corresponding to three different maturity stages at harvest, stored 0, 1, 2, 3 and 4 weeks at 1 and 5°C have been tested by instrumental and sensory means. A Instrumental classification of woolliness has been compared to the sensory assessment. For Springcrest peaches the sensory results match with those found for the instrumental procedure. In this case , Woolliness appears after 2 weeks of storage at 5°C, changing abruptly from crispy to woolly. Miraflores peaches did not develop woolliness during storage. After comparing with sensory results, it is shown that a common instrumental scale may be appropriate to classify for woolliness all peach varieties.
Resumo:
The consumption of melon (Cucumis melo L.) has been, until several years ago, regional, seasonal and without commercial interest. Recent commercial changes and world wide transportation have changed this situation. Melons from 3 different ripeness stages at harvest and 7 cold storage periods have been analysed by destructive and non destructive tests. Chemical, physical, mechanical (non destructive impact, compression, skin puncture and Magness- Taylor) and sensory tests were carried out in order to select the best test to assess quality and to determine the optimal ripeness stage at harvest. Analysis of variance and Principal Component Analysis were performed to study the data. The mechanical properties based on non-destructive Impact and Compression can be used to monitor cold storage evolution. They can also be used at harvest to segregate the highest ripeness stage (41 days after anthesis DAA) in relation to less ripe stages (34 and 28 DAA).Only 34 and 41 DAA reach a sensory evaluation above 50 in a scale from 0-100.
Resumo:
Strict technical quality assurance procedures are essential for PV plant bankability. When large-scale PV plants are concerned, this is typically accomplished in three consecutive phases: an energy yield forecast, that is performed at the beginning of the project and is typically accomplished by means of a simulation exercise performed with dedicated software; a reception test campaign, that is performed at the end of the commissioning and consists of a set of tests for determining the efficiency and the reliability of the PV plant devices; and a performance analysis of the first years of operation, that consists in comparing the real energy production with the one calculated from the recorded operating conditions and taking into account the maintenance records. In the last six years, IES-UPM has offered both indoor and on-site quality control campaigns for more than 60 PV plants, with an accumulated power of more than 300 MW, in close contact with Engineering, Procurement and Construction Contractors and financial entities. This paper presents the lessons learned from such experience.
Resumo:
Debido al reciente incremento de conflictos en el mundo árabe y dado el interés nacional de España en dicha zona, se propone en este proyecto un estudio inicial para el diseño y desarrollo de un microsatélite que ayude al gobierno de España a mantener esa zona bajo observación constante. En el presente trabajo se abarcan todos los subsistemas del satélite, haciéndose un estudio más detallado del subsistema de potencia
Resumo:
Este proyecto consiste en el estudio y dimensionado inicial del sistema de potencia de un satélite de observación, que sirva de ayuda a otros sistemas de mayor precisión a la hora de detectar posibles terremotos y actividad volcánica mediante el análisis de señales electromagnéticas presentes en la ionosfera. Para ello el satélite incorpora, entre otros elementos sensores eléctricos, un analizador de plasma, y un detector de partículas. Con esta instrumentación se pretenden detectar los cambios que se producen en el campo electromagnético terrestre como consecuencia del movimiento de las placas tectónicas, y descubrir así las posibles anomalías que preceden a un seísmo. Para no sobrepasar el presupuesto con el que se ha ideado el proyecto se utilizarán sistemas que permitan la lectura de datos de la forma más simple, pudiendo ocurrir que los datos recogidos no se transmitan al control de Tierra en tiempo real, impidiendo a los científicos analizar los datos recogidos hasta unos días después, de ahí que este satélite experimental deba emplearse, en principio, como apoyo a programas de detención de terremotos más sofisticados y con mayores medios técnicos. Evidentemente, con este sistema también se podrán recoger datos tras los seísmos y examinarlos posteriormente. La órbita del satélite será una órbita LEO (Low Earth Orbit) de una altitud aproximada de 670 Km, estimándose el tiempo de vida del satélite en 5 años. Intentando emplear la mayor parte de los recursos económicos en el equipamiento científico, la estructura será la más simple posible, esto es, un paralelepípedo de dimensiones compactas con un peso aproximado de 185 kg, contando con paneles solares desplegables y en su interior con baterías que proporcionarán potencia al satélite durante la fase de lanzamiento y en momentos concretos.
Resumo:
Las principal conclusión que se puede obtener tras el estudio es que el satélite, tal y como se ha tenido en cuenta, es perfectamente funcional desde el punto de vista eléctrico. Por la parte de la generación de potencia, los paneles son capaces de ofreces una cantidad tal como para que aproximadamente la mitad (en el caso de funcionamiento normal) de esta potencia sea destinada a la carga útil. Además, incluso en los modos de fallo definidos, el valor de potencia dedicada a la carga útil, es suficientemente alta como para que merezca la pena mantener el satélite operativo. Respecto de las baterías, se puede observar por su comportamiento que están, sobredimensionadas y por ello actúan como un elemento regulador del sistema completo, ya que tiene un amplio margen de trabajo por el cual se puede modificar el funcionamiento general. Y esto se demuestra no sólo en cuanto al estado de carga, que para el perfil de consumo constante y el de cuatro pulsos de 120 W por día se mantiene siempre por encima del 99%, si no también en términos de charging rate, el cual se está siempre dentro de los límites establecidos por el fabricante, asegurando una vida operativa acorde con la nominal. Por último, sobre el propio método de simulación se puede extraer que aun no siendo la mejor plataforma donde estudiar estos comportamientos. Presenta el inconveniente de que, en ciertas partes, restringe la flexibilidad a la hora de cambiar múltiples condiciones al mismo tiempo, pero a cambio permite un estudio bastante amplio con un requisito de conocimientos y de complejidad bajo, de manera que habilita a cualquier estudiante a llevar a cabo estudios similares.
Resumo:
Examples of global solutions of the shell equations are presented, such as the ones based on the well known Levy series expansion. Also discussed are some natural extensions of the Levy method as well as the inherent limitations of these methods concerning the shell model assumptions, boundary conditions and geometric regularity. Finally, some open additional design questions are noted mainly related to the simultaneous use in analysis of these global techniques and the local methods (like the finite elements) to finding the optimal shell shape, and to determining the reinforcement layout.
Resumo:
El Proyecto Fin De Carrera presentado a continuación contiene una descripción del prediseño del microsatélite de observación terrestre Gaia, particularizando ésta especialmente en el sistema de potencia del mismo. En el presente capítulo se describen los objetivos de la misión expuesta y los requerimientos del satélite objeto de este proyecto.