24 resultados para coupled nonlinear Schrodinger equations
Resumo:
Las transformaciones martensíticas (MT) se definen como un cambio en la estructura del cristal para formar una fase coherente o estructuras de dominio multivariante, a partir de la fase inicial con la misma composición, debido a pequeños intercambios o movimientos atómicos cooperativos. En el siglo pasado se han descubierto MT en diferentes materiales partiendo desde los aceros hasta las aleaciones con memoria de forma, materiales cerámicos y materiales inteligentes. Todos muestran propiedades destacables como alta resistencia mecánica, memoria de forma, efectos de superelasticidad o funcionalidades ferroicas como la piezoelectricidad, electro y magneto-estricción etc. Varios modelos/teorías se han desarrollado en sinergia con el desarrollo de la física del estado sólido para entender por qué las MT generan microstructuras muy variadas y ricas que muestran propiedades muy interesantes. Entre las teorías mejor aceptadas se encuentra la Teoría Fenomenológica de la Cristalografía Martensítica (PTMC, por sus siglas en inglés) que predice el plano de hábito y las relaciones de orientación entre la austenita y la martensita. La reinterpretación de la teoría PTMC en un entorno de mecánica del continuo (CM-PTMC) explica la formación de los dominios de estructuras multivariantes, mientras que la teoría de Landau con dinámica de inercia desentraña los mecanismos físicos de los precursores y otros comportamientos dinámicos. La dinámica de red cristalina desvela la reducción de la dureza acústica de las ondas de tensión de red que da lugar a transformaciones débiles de primer orden en el desplazamiento. A pesar de las diferencias entre las teorías estáticas y dinámicas dado su origen en diversas ramas de la física (por ejemplo mecánica continua o dinámica de la red cristalina), estas teorías deben estar inherentemente conectadas entre sí y mostrar ciertos elementos en común en una perspectiva unificada de la física. No obstante las conexiones físicas y diferencias entre las teorías/modelos no se han tratado hasta la fecha, aun siendo de importancia crítica para la mejora de modelos de MT y para el desarrollo integrado de modelos de transformaciones acopladas de desplazamiento-difusión. Por lo tanto, esta tesis comenzó con dos objetivos claros. El primero fue encontrar las conexiones físicas y las diferencias entre los modelos de MT mediante un análisis teórico detallado y simulaciones numéricas. El segundo objetivo fue expandir el modelo de Landau para ser capaz de estudiar MT en policristales, en el caso de transformaciones acopladas de desplazamiento-difusión, y en presencia de dislocaciones. Comenzando con un resumen de los antecedente, en este trabajo se presentan las bases físicas de los modelos actuales de MT. Su capacidad para predecir MT se clarifica mediante el ansis teórico y las simulaciones de la evolución microstructural de MT de cúbicoatetragonal y cúbicoatrigonal en 3D. Este análisis revela que el modelo de Landau con representación irreducible de la deformación transformada es equivalente a la teoría CM-PTMC y al modelo de microelasticidad para predecir los rasgos estáticos durante la MT, pero proporciona una mejor interpretación de los comportamientos dinámicos. Sin embargo, las aplicaciones del modelo de Landau en materiales estructurales están limitadas por su complejidad. Por tanto, el primer resultado de esta tesis es el desarrollo del modelo de Landau nolineal con representación irreducible de deformaciones y de la dinámica de inercia para policristales. La simulación demuestra que el modelo propuesto es consistente fcamente con el CM-PTMC en la descripción estática, y también permite una predicción del diagrama de fases con la clásica forma ’en C’ de los modos de nucleación martensítica activados por la combinación de temperaturas de enfriamiento y las condiciones de tensión aplicada correlacionadas con la transformación de energía de Landau. Posteriomente, el modelo de Landau de MT es integrado con un modelo de transformación de difusión cuantitativa para elucidar la relajación atómica y la difusión de corto alcance de los elementos durante la MT en acero. El modelo de transformaciones de desplazamiento y difusión incluye los efectos de la relajación en borde de grano para la nucleación heterogenea y la evolución espacio-temporal de potenciales de difusión y movilidades químicas mediante el acoplamiento de herramientas de cálculo y bases de datos termo-cinéticos de tipo CALPHAD. El modelo se aplica para estudiar la evolución microstructural de aceros al carbono policristalinos procesados por enfriamiento y partición (Q&P) en 2D. La microstructura y la composición obtenida mediante la simulación se comparan con los datos experimentales disponibles. Los resultados muestran el importante papel jugado por las diferencias en movilidad de difusión entre la fase austenita y martensita en la distibución de carbono en las aceros. Finalmente, un modelo multi-campo es propuesto mediante la incorporación del modelo de dislocación en grano-grueso al modelo desarrollado de Landau para incluir las diferencias morfológicas entre aceros y aleaciones con memoria de forma con la misma ruptura de simetría. La nucleación de dislocaciones, la formación de la martensita ’butterfly’, y la redistribución del carbono después del revenido son bien representadas en las simulaciones 2D del estudio de la evolución de la microstructura en aceros representativos. Con dicha simulación demostramos que incluyendo las dislocaciones obtenemos para dichos aceros, una buena comparación frente a los datos experimentales de la morfología de los bordes de macla, la existencia de austenita retenida dentro de la martensita, etc. Por tanto, basado en un modelo integral y en el desarrollo de códigos durante esta tesis, se ha creado una herramienta de modelización multiescala y multi-campo. Dicha herramienta acopla la termodinámica y la mecánica del continuo en la macroescala con la cinética de difusión y los modelos de campo de fase/Landau en la mesoescala, y también incluye los principios de la cristalografía y de la dinámica de red cristalina en la microescala. ABSTRACT Martensitic transformation (MT), in a narrow sense, is defined as the change of the crystal structure to form a coherent phase, or multi-variant domain structures out from a parent phase with the same composition, by small shuffles or co-operative movements of atoms. Over the past century, MTs have been discovered in different materials from steels to shape memory alloys, ceramics, and smart materials. They lead to remarkable properties such as high strength, shape memory/superelasticity effects or ferroic functionalities including piezoelectricity, electro- and magneto-striction, etc. Various theories/models have been developed, in synergy with development of solid state physics, to understand why MT can generate these rich microstructures and give rise to intriguing properties. Among the well-established theories, the Phenomenological Theory of Martensitic Crystallography (PTMC) is able to predict the habit plane and the orientation relationship between austenite and martensite. The re-interpretation of the PTMC theory within a continuum mechanics framework (CM-PTMC) explains the formation of the multivariant domain structures, while the Landau theory with inertial dynamics unravels the physical origins of precursors and other dynamic behaviors. The crystal lattice dynamics unveils the acoustic softening of the lattice strain waves leading to the weak first-order displacive transformation, etc. Though differing in statics or dynamics due to their origins in different branches of physics (e.g. continuum mechanics or crystal lattice dynamics), these theories should be inherently connected with each other and show certain elements in common within a unified perspective of physics. However, the physical connections and distinctions among the theories/models have not been addressed yet, although they are critical to further improving the models of MTs and to develop integrated models for more complex displacivediffusive coupled transformations. Therefore, this thesis started with two objectives. The first one was to reveal the physical connections and distinctions among the models of MT by means of detailed theoretical analyses and numerical simulations. The second objective was to expand the Landau model to be able to study MTs in polycrystals, in the case of displacive-diffusive coupled transformations, and in the presence of the dislocations. Starting with a comprehensive review, the physical kernels of the current models of MTs are presented. Their ability to predict MTs is clarified by means of theoretical analyses and simulations of the microstructure evolution of cubic-to-tetragonal and cubic-to-trigonal MTs in 3D. This analysis reveals that the Landau model with irreducible representation of the transformed strain is equivalent to the CM-PTMC theory and microelasticity model to predict the static features during MTs but provides better interpretation of the dynamic behaviors. However, the applications of the Landau model in structural materials are limited due its the complexity. Thus, the first result of this thesis is the development of a nonlinear Landau model with irreducible representation of strains and the inertial dynamics for polycrystals. The simulation demonstrates that the updated model is physically consistent with the CM-PTMC in statics, and also permits a prediction of a classical ’C shaped’ phase diagram of martensitic nucleation modes activated by the combination of quenching temperature and applied stress conditions interplaying with Landau transformation energy. Next, the Landau model of MT is further integrated with a quantitative diffusional transformation model to elucidate atomic relaxation and short range diffusion of elements during the MT in steel. The model for displacive-diffusive transformations includes the effects of grain boundary relaxation for heterogeneous nucleation and the spatio-temporal evolution of diffusion potentials and chemical mobility by means of coupling with a CALPHAD-type thermo-kinetic calculation engine and database. The model is applied to study for the microstructure evolution of polycrystalline carbon steels processed by the Quenching and Partitioning (Q&P) process in 2D. The simulated mixed microstructure and composition distribution are compared with available experimental data. The results show that the important role played by the differences in diffusion mobility between austenite and martensite to the partitioning in carbon steels. Finally, a multi-field model is proposed by incorporating the coarse-grained dislocation model to the developed Landau model to account for the morphological difference between steels and shape memory alloys with same symmetry breaking. The dislocation nucleation, the formation of the ’butterfly’ martensite, and the redistribution of carbon after tempering are well represented in the 2D simulations for the microstructure evolution of the representative steels. With the simulation, we demonstrate that the dislocations account for the experimental observation of rough twin boundaries, retained austenite within martensite, etc. in steels. Thus, based on the integrated model and the in-house codes developed in thesis, a preliminary multi-field, multiscale modeling tool is built up. The new tool couples thermodynamics and continuum mechanics at the macroscale with diffusion kinetics and phase field/Landau model at the mesoscale, and also includes the essentials of crystallography and crystal lattice dynamics at microscale.
Resumo:
In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185-1191, 2010) and Elaskar et al. (Physica A. 390:2759-2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation {Mathematical expression}, where {Mathematical expression} is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases {Mathematical expression} can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data
Resumo:
Arch bridge structural solution has been known for centuries, in fact the simple nature of arch that require low tension and shear strength was an advantage as the simple materials like stone and brick were the only option back in ancient centuries. By the pass of time especially after industrial revolution, the new materials were adopted in construction of arch bridges to reach longer spans. Nowadays one long span arch bridge is made of steel, concrete or combination of these two as "CFST", as the result of using these high strength materials, very long spans can be achieved. The current record for longest arch belongs to Chaotianmen bridge over Yangtze river in China with 552 meters span made of steel and the longest reinforced concrete type is Wanxian bridge which also cross the Yangtze river through a 420 meters span. Today the designer is no longer limited by span length as long as arch bridge is the most applicable solution among other approaches, i.e. cable stayed and suspended bridges are more reasonable if very long span is desired. Like any super structure, the economical and architectural aspects in construction of a bridge is extremely important, in other words, as a narrower bridge has better appearance, it also require smaller volume of material which make the design more economical. Design of such bridge, beside the high strength materials, requires precise structural analysis approaches capable of integrating the combination of material behaviour and complex geometry of structure and various types of loads which may be applied to bridge during its service life. Depend on the design strategy, analysis may only evaluates the linear elastic behaviour of structure or consider the nonlinear properties as well. Although most of structures in the past were designed to act in their elastic range, the rapid increase in computational capacity allow us to consider different sources of nonlinearities in order to achieve a more realistic evaluations where the dynamic behaviour of bridge is important especially in seismic zones where large movements may occur or structure experience P - _ effect during the earthquake. The above mentioned type of analysis is computationally expensive and very time consuming. In recent years, several methods were proposed in order to resolve this problem. Discussion of recent developments on these methods and their application on long span concrete arch bridges is the main goal of this research. Accordingly available long span concrete arch bridges have been studied to gather the critical information about their geometrical aspects and properties of their materials. Based on concluded information, several concrete arch bridges were designed for further studies. The main span of these bridges range from 100 to 400 meters. The Structural analysis methods implemented in in this study are as following: Elastic Analysis: Direct Response History Analysis (DRHA): This method solves the direct equation of motion over time history of applied acceleration or imposed load in linear elastic range. Modal Response History Analysis (MRHA): Similar to DRHA, this method is also based on time history, but the equation of motion is simplified to single degree of freedom system and calculates the response of each mode independently. Performing this analysis require less time than DRHA. Modal Response Spectrum Analysis (MRSA): As it is obvious from its name, this method calculates the peak response of structure for each mode and combine them using modal combination rules based on the introduced spectra of ground motion. This method is expected to be fastest among Elastic analysis. Inelastic Analysis: Nonlinear Response History Analysis (NL-RHA): The most accurate strategy to address significant nonlinearities in structural dynamics is undoubtedly the nonlinear response history analysis which is similar to DRHA but extended to inelastic range by updating the stiffness matrix for every iteration. This onerous task, clearly increase the computational cost especially for unsymmetrical buildings that requires to be analyzed in a full 3D model for taking the torsional effects in to consideration. Modal Pushover Analysis (MPA): The Modal Pushover Analysis is basically the MRHA but extended to inelastic stage. After all, the MRHA cannot solve the system of dynamics because the resisting force fs(u; u_ ) is unknown for inelastic stage. The solution of MPA for this obstacle is using the previously recorded fs to evaluate system of dynamics. Extended Modal Pushover Analysis (EMPA): Expanded Modal pushover is a one of very recent proposed methods which evaluates response of structure under multi-directional excitation using the modal pushover analysis strategy. In one specific mode,the original pushover neglect the contribution of the directions different than characteristic one, this is reasonable in regular symmetric building but a structure with complex shape like long span arch bridges may go through strong modal coupling. This method intend to consider modal coupling while it take same time of computation as MPA. Coupled Nonlinear Static Pushover Analysis (CNSP): The EMPA includes the contribution of non-characteristic direction to the formal MPA procedure. However the static pushovers in EMPA are performed individually for every mode, accordingly the resulted values from different modes can be combined but this is only valid in elastic phase; as soon as any element in structure starts yielding the neutral axis of that section is no longer fixed for both response during the earthquake, meaning the longitudinal deflection unavoidably affect the transverse one or vice versa. To overcome this drawback, the CNSP suggests executing pushover analysis for governing modes of each direction at the same time. This strategy is estimated to be more accurate than MPA and EMPA, moreover the calculation time is reduced because only one pushover analysis is required. Regardless of the strategy, the accuracy of structural analysis is highly dependent on modelling and numerical integration approaches used in evaluation of each method. Therefore the widely used Finite Element Method is implemented in process of all analysis performed in this research. In order to address the study, chapter 2, starts with gathered information about constructed long span arch bridges, this chapter continuous with geometrical and material definition of new models. Chapter 3 provides the detailed information about structural analysis strategies; furthermore the step by step description of procedure of all methods is available in Appendix A. The document ends with the description of results and conclusion of chapter 4.
Resumo:
Interface discontinuity factors based on the Generalized Equivalence Theory are commonly used in nodal homogenized diffusion calculations so that diffusion average values approximate heterogeneous higher order solutions. In this paper, an additional form of interface correction factors is presented in the frame of the Analytic Coarse Mesh Finite Difference Method (ACMFD), based on a correction of the modal fluxes instead of the physical fluxes. In the ACMFD formulation, implemented in COBAYA3 code, the coupled multigroup diffusion equations inside a homogenized region are reduced to a set of uncoupled modal equations through diagonalization of the multigroup diffusion matrix. Then, physical fluxes are transformed into modal fluxes in the eigenspace of the diffusion matrix. It is possible to introduce interface flux discontinuity jumps as the difference of heterogeneous and homogeneous modal fluxes instead of introducing interface discontinuity factors as the ratio of heterogeneous and homogeneous physical fluxes. The formulation in the modal space has been implemented in COBAYA3 code and assessed by comparison with solutions using classical interface discontinuity factors in the physical space
Resumo:
We develop a novel remote sensing technique for the observation of waves on the ocean surface. Our method infers the 3-D waveform and radiance of oceanic sea states via a variational stereo imagery formulation. In this setting, the shape and radiance of the wave surface are given by minimizers of a composite energy functional that combines a photometric matching term along with regularization terms involving the smoothness of the unknowns. The desired ocean surface shape and radiance are the solution of a system of coupled partial differential equations derived from the optimality conditions of the energy functional. The proposed method is naturally extended to study the spatiotemporal dynamics of ocean waves and applied to three sets of stereo video data. Statistical and spectral analysis are carried out. Our results provide evidence that the observed omnidirectional wavenumber spectrum S(k) decays as k-2.5 is in agreement with Zakharov's theory (1999). Furthermore, the 3-D spectrum of the reconstructed wave surface is exploited to estimate wave dispersion and currents.
Resumo:
This work discusses an iterative procedure of shaping offset dual-reflector antennas based on geometrical optics considering both far-field and near-field measurements of amplitude and phase from the feed horn. The surfaces synthesized will transform a known radiation field of a feed to a desired aperture distribution. This technique is applied for both circular and elliptical apertures and has the advantage to simplify the problem compared with existing techniques based on solving nonlinear differential equations. A MATLAB tool has been developed to implement the shaping algorithms. This procedure is applied for the design of a 1.1 m high-gain antenna for the ESA’s Solar Orbiter spacecraft. This antenna operating at X-band will manage high data rate and high efficiency communications with Earth stations.
Resumo:
A linear method is developed for solving the nonlinear differential equations of a lumped-parameter thermal model of a spacecraft moving in a closed orbit. This method, based on perturbation theory, is compared with heuristic linearizations of the same equations. The essential feature of the linear approach is that it provides a decomposition in thermal modes, like the decomposition of mechanical vibrations in normal modes. The stationary periodic solution of the linear equations can be alternately expressed as an explicit integral or as a Fourier series. This method is applied to a minimal thermal model of a satellite with ten isothermal parts (nodes), and the method is compared with direct numerical integration of the nonlinear equations. The computational complexity of this method is briefly studied for general thermal models of orbiting spacecraft, and it is concluded that it is certainly useful for reduced models and conceptual design but it can also be more efficient than the direct integration of the equations for large models. The results of the Fourier series computations for the ten-node satellite model show that the periodic solution at the second perturbative order is sufficiently accurate.
Resumo:
The derivative nonlinear Schrodinger DNLS equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model equal dampings of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase, no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic relaxation oscillations that are absent for zero growth rate. This hard transition in phase-space behavior occurs for left-hand LH polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable, with damping less than about unstable wave frequency 2/4 x ion cyclotron frequency. The structural stability of the transition was explored by going into a fully 3-wave model different dampings of daughter waves,four-dimensional flow; both models differ in significant phase-space features but keep common features essential for the transition.
Resumo:
The analysis of the running safety of railway vehicles on viaducts subject to strong lateral actions such as cross winds requires coupled nonlinear vehicle-bridge interaction models, capable to study extreme events. In this paper original models developed by the authors are described, based on finite elements for the structure, multibody and finite element models for the vehicle, and specially developed interaction elements for the interface between wheel and rail. The models have been implemented within ABAQUS and have full nonlinear capabilities for the structure, the vehicle and the contact interface. An application is developed for the Ulla Viaduct, a 105 m tall arch in the Spanish high-speed railway network. The dynamic analyses allow obtaining critical wind curves, which define the running safety conditions for a given train in terms of speed of circulation and wind speed
Resumo:
El principal objetivo de la tesis es estudiar el acoplamiento entre los subsistemas de control de actitud y de control térmico de un pequeño satélite, con el fin de buscar la solución a los problemas relacionados con la determinación de los parámetros de diseño. Se considera la evolución de la actitud y de las temperaturas del satélite bajo la influencia de dos estrategias de orientación diferentes: 1) estabilización magnética pasiva de la orientación (PMAS, passive magnetic attitude stabilization), y 2) control de actitud magnético activo (AMAC, active magnetic attitude control). En primer lugar se presenta el modelo matemático del problema, que incluye la dinámica rotacional y el modelo térmico. En el problema térmico se considera un satélite cúbico modelizado por medio de siete nodos (seis externos y uno interno) aplicando la ecuación del balance térmico. Una vez establecido el modelo matemático del problema, se estudia la evolución que corresponde a las dos estrategias mencionadas. La estrategia PMAS se ha seleccionado por su simplicidad, fiabilidad, bajo coste, ahorrando consumo de potencia, masa coste y complejidad, comparado con otras estrategias. Se ha considerado otra estrategia de control que consigue que el satélite gire a una velocidad requerida alrededor de un eje deseado de giro, pudiendo controlar su dirección en un sistema inercial de referencia, ya que frecuentemente el subsistema térmico establece requisitos de giro alrededor de un eje del satélite orientado en una dirección perpendicular a la radiación solar incidente. En relación con el problema térmico, para estudiar la influencia de la velocidad de giro en la evolución de las temperaturas en diversos puntos del satélite, se ha empleado un modelo térmico linealizado, obtenido a partir de la formulación no lineal aplicando un método de perturbaciones. El resultado del estudio muestra que el tiempo de estabilización de la temperatura y la influencia de las cargas periódicas externas disminuye cuando aumenta la velocidad de giro. Los cambios de temperatura se reducen hasta ser muy pequeños para velocidades de rotación altas. En relación con la estrategia PMAC se ha observado que a pesar de su uso extendido entre los micro y nano satélites todavía presenta problemas que resolver. Estos problemas están relacionados con el dimensionamiento de los parámetros del sistema y la predicción del funcionamiento en órbita. Los problemas aparecen debido a la dificultad en la determinación de las características magnéticas de los cuerpos ferromagnéticos (varillas de histéresis) que se utilizan como amortiguadores de oscilaciones en los satélites. Para estudiar este problema se presenta un modelo analítico que permite estimar la eficiencia del amortiguamiento, y que se ha aplicado al estudio del comportamiento en vuelo de varios satélites, y que se ha empleado para comparar los resultados del modelo con los obtenidos en vuelo, observándose que el modelo permite explicar satisfactoriamente el comportamiento registrado. ABSTRACT The main objective of this thesis is to study the coupling between the attitude control and thermal control subsystems of a small satellite, and address the solution to some existing issues concerning the determination of their parameters. Through the thesis the attitude and temperature evolution of the satellite is studied under the influence of two independent attitude stabilization and control strategies: (1) passive magnetic attitude stabilization (PMAS), and (2) active magnetic attitude control (AMAC). In this regard the mathematical model of the problem is explained and presented. The mathematical model includes both the rotational dynamics and the thermal model. The thermal model is derived for a cubic satellite by solving the heat balance equation for 6 external and 1 internal nodes. Once established the mathematical model of the problem, the above mentioned attitude strategies were applied to the system and the temperature evolution of the 7 nodes of the satellite was studied. The PMAS technique has been selected to be studied due to its prevalent use, simplicity, reliability, and cost, as this strategy significantly saves the overall power, weight, cost, and reduces the complexity of the system compared to other attitude control strategies. In addition to that, another control law that provides the satellite with a desired spin rate along a desired axis of the satellite, whose direction can be controlled with respect to the inertial reference frame is considered, as the thermal subsystem of a satellite usually demands a spin requirement around an axis of the satellite which is positioned perpendicular to the direction of the coming solar radiation. Concerning the thermal problem, to study the influence of spin rate on temperature evolution of the satellite a linear approach of the thermal model is used, which is based on perturbation theory applied to the nonlinear differential equations of the thermal model of a spacecraft moving in a closed orbit. The results of this study showed that the temperature stabilization time and the periodic influence of the external thermal loads decreases by increasing the spin rate. However, the changes become insignificant for higher values of spin rate. Concerning the PMAS strategy, it was observed that in spite of its extended application to micro and nano satellites, still there are some issues to be solved regarding this strategy. These issues are related to the sizing of its system parameters and predicting the in-orbit performance. The problems were found to be rooted in the difficulties that exist in determining the magnetic characteristics of the ferromagnetic bodies (hysteresis rods) that are applied as damping devices on-board satellites. To address these issues an analytic model for estimating their damping efficiency is proposed and applied to several existing satellites in order to compare the results with their respective in-flight data. This model can explain the behavior showed by these satellites.
Resumo:
Typical streak computations present in the literature correspond to linear streaks or to small amplitude nonlinear streaks computed using DNS or nonlinear PSE. We use the Reduced Navier-Stokes (RNS) equations to compute the streamwise evolution of fully non-linear streaks with high amplitude in a laminar flat plate boundary layer. The RNS formulation provides Reynolds number independent solutions that are asymptotically exact in the limit $Re \gg 1$, it requires much less computational effort than DNS, and it does not have the consistency and convergence problems of the PSE. We present various streak computations to show that the flow configuration changes substantially when the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, that end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results.
Resumo:
En esta tesis se integran numéricamente las ecuaciones reducidas de Navier Stokes (RNS), que describen el flujo en una capa límite tridimensional que presenta también una escala característica espacial corta en el sentido transversal. La formulación RNS se usa para el cálculo de “streaks” no lineales de amplitud finita, y los resultados conseguidos coinciden con los existentes en la literatura, obtenidos típicamente utilizando simulación numérica directa (DNS) o nonlinear parabolized stability equations (PSE). El cálculo de los “streaks” integrando las RNS es mucho menos costoso que usando DNS, y no presenta los problemas de estabilidad que aparecen en la formulación PSE cuando la amplitud del “streak” deja de ser pequeña. El código de integración RNS se utiliza también para el cálculo de los “streaks” que aparecen de manera natural en el borde de ataque de una placa plana en ausencia de perturbaciones en la corriente uniforme exterior. Los resultados existentes hasta ahora calculaban estos “streaks” únicamente en el límite lineal (amplitud pequeña), y en esta tesis se lleva a cabo el cálculo de los mismos en el régimen completamente no lineal (amplitud finita). En la segunda parte de la tesis se generaliza el código RNS para incluir la posibilidad de tener una placa no plana, con curvatura en el sentido transversal que varía lentamente en el sentido de la corriente. Esto se consigue aplicando un cambio de coordenadas, que transforma el dominio físico en uno rectangular. La formulación RNS se integra también expresada en las correspondientes coordenadas curvilíneas. Este código generalizado RNS se utiliza finalmente para estudiar el flujo de capa límite sobre una placa con surcos que varían lentamente en el sentido de la corriente, y es usado para simular el flujo sobre surcos que crecen en tal sentido. Abstract In this thesis, the reduced Navier Stokes (RNS) equations are numerically integrated. This formulation describes the flow in a three-dimensional boundary layer that also presents a short characteristic space scale in the spanwise direction. RNS equations are used to calculate nonlinear finite amplitude “streaks”, and the results agree with those reported in the literature, typically obtained using direct numerical simulation (DNS) or nonlinear parabolized stability equations (PSE). “Streaks” simulations through the RNS integration are much cheaper than using DNS, and avoid stability problems that appear in the PSE when the amplitude of the “streak” is not small. The RNS integration code is also used to calculate the “streaks” that naturally emerge at the leading edge of a flat plate boundary layer in the absence of any free stream perturbations. Up to now, the existing results for these “streaks” have been only calculated in the linear limit (small amplitude), and in this thesis their calculation is carried out in the fully nonlinear regime (finite amplitude). In the second part of the thesis, the RNS code is generalized to include the possibility of having a non-flat plate, curved in the spanwise direction and slowly varying in the streamwise direction. This is achieved by applying a change of coordinates, which transforms the physical domain into a rectangular one. The RNS formulation expressed in the corresponding curvilinear coordinates is also numerically integrated. This generalized RNS code is finally used to study the boundary layer flow over a plate with grooves which vary slowly in the streamwise direction; and this code is used to simulate the flow over grooves that grow in the streamwise direction.
Resumo:
The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require 3D coupled vehicle-bridge models, and consideration of wheel to rail contact, a phenomenon which is complex and costly to model in detail. We describe here a fully nonlinear coupled model, described in absolute coordinates and incorporated into a commercial finite element framework. Two applications are presented, firstly to a vehicle subject to a strong wind gust traversing a br idge, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle. The second application is to a real viaduct in a high-speed line, with a long continuous deck and tall piers with high lateral compliance. The results show the safety of the traffic as well as the relevance of considering the wind action and the nonlinear response.
Resumo:
The dynamic effects of high-speed trains on viaducts are important issues for the design of the structures, as well as for determining safe running conditions of trains. In this work we start by reviewing the relevance of some basic moving load models for the dynamic action of vertical traffic loads. The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require 3D coupled vehicle-bridge models and consideration of wheel to rail contact. We describe here a fully nonlinear coupled model, formulated in absolute coordinates and incorporated into a commercial finite element framework. An application example is presented for a vehicle subject to a strong wind gust traversing a bridge, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle.
Resumo:
The influence of a strong, high‐frequency electric field on the ion‐ion correlations in a fully ionized plasma is investigated in the limit of infinite ion mass, starting with the Bogoliubov‐Born‐Green‐Kirkwood‐Yvon hierarchy of equations; a significant departure from the thermal correlations is found. It is shown that the above effect may substantially modify earlier results on the nonlinear high‐frequency plasma conductivity.