42 resultados para algoritmo SDF, SDF, spessore mesh
Resumo:
Desarrollo de algoritmo de interpolación basado en descomposición octree y funciones radiales de soporte compacto para movimiento de mallas en problemas aerolásticos
Resumo:
The appearance of radix-$2^{2}$ was a milestone in the design of pipelined FFT hardware architectures. Later, radix-$2^{2}$ was extended to radix-$2^{k}$ . However, radix-$2^{k}$ was only proposed for single-path delay feedback (SDF) architectures, but not for feedforward ones, also called multi-path delay commutator (MDC). This paper presents the radix-$2^{k}$ feedforward (MDC) FFT architectures. In feedforward architectures radix-$2^{k}$ can be used for any number of parallel samples which is a power of two. Furthermore, both decimation in frequency (DIF) and decimation in time (DIT) decompositions can be used. In addition to this, the designs can achieve very high throughputs, which makes them suitable for the most demanding applications. Indeed, the proposed radix-$2^{k}$ feedforward architectures require fewer hardware resources than parallel feedback ones, also called multi-path delay feedback (MDF), when several samples in parallel must be processed. As a result, the proposed radix-$2^{k}$ feedforward architectures not only offer an attractive solution for current applications, but also open up a new research line on feedforward structures.
Resumo:
This paper presents a low-power, high-speed 4-data-path 128-point mixed-radix (radix-2 & radix-2 2 ) FFT processor for MB-OFDM Ultra-WideBand (UWB) systems. The processor employs the single-path delay feedback (SDF) pipelined structure for the proposed algorithm, it uses substructure-sharing multiplication units and shift-add structure other than traditional complex multipliers. Furthermore, the word lengths are properly chosen, thus the hardware costs and power consumption of the proposed FFT processor are efficiently reduced. The proposed FFT processor is verified and synthesized by using 0.13 µm CMOS technology with a supply voltage of 1.32 V. The implementation results indicate that the proposed 128-point mixed-radix FFT architecture supports a throughput rate of 1Gsample/s with lower power consumption in comparison to existing 128-point FFT architectures
Resumo:
Debido a las limitaciones de las técnicas de optimización convencionales, en el siguiente trabajo se presenta una metaheurística basada en un algoritmo genético (AG), para resolver problemas de programación de tipo flow shop, con el objetivo de minimizar el tiempo de finalización de todos los trabajos, más conocido como makespan. Este problema, considerado de difícil solución, es típico de la optimización combinatoria y se presenta en talleres con tecnología de maquinado, donde existen máquinas-herramientas convencionales y se fabrican diferentes tipos de piezas que tienen en común una misma ruta tecnológica (orden del proceso). La solución propuesta se probó con problemas clásicos publicados por otros autores, obteniéndose resultados satisfactorios en cuanto a la calidad de las soluciones encontradas y el tiempo de cómputo empleado.
Resumo:
En este trabajo se utiliza la metaheurística nombrada algoritmo genético, para dos variantes típicas de problemas de planificación presentes en un taller de maquinado de piezas: las variantes flujo general y flujo regular, y se ha seleccionado la minimización del tiempo de finalización de todos los trabajos o camino máximo, como objetivo a optimizar en un plan de trabajo. Este problema es considerado de difícil solución y es típico de la optimización combinatoria. Los resultados demuestran la calidad de las soluciones encontradas en correspondencia con el tiempo de cómputo empleado, al ser comparados con problemas clásicos reportados por otros autores. La representación propuesta de cada cromosoma genera el universo completo de soluciones factibles, donde es posible encontrar valores óptimos globales de solución y cumple con las restricciones del problema.
Resumo:
This thesis investigates the acoustic properties of microperforated panels as an alternative to passive noise control. The first chapters are devoted to the review of analytical models to obtain the acoustic impedance and absorption coefficient of perforated panels. The use of panels perforated with circular holes or with slits is discussed. The theoretical models are presented and some modifications are proposed to improve the modeling of the physical phenomena occurring at the perforations of the panels. The absorption band is widened through the use of multiple layer microperforated panels and/or the combination of a millimetric panel with a porous layer that can be a fibrous material or a nylon mesh. A commercial micrometric mesh downstream a millimetric panel is proposed as a very efficient and low cost solution for controlling noise in reduced spaces. The simulated annealing algorithm is used in order to optimize the panel construction to provide a maximum of absorption in a determined wide band frequency range. Experiments are carried out at normal sound incidence and plane waves. One example is shown for a double layer microperforated panel subjected to grazing flow. A good agreement is achieved between the theory and the experiments. RESUMEN En esta tesis se investigan las propiedades acústicas de paneles micro perforados como una alternativa al control pasivo del ruido. Los primeros capítulos están dedicados a la revisión de los modelos de análisis para obtener la impedancia acústica y el coeficiente de absorción de los paneles perforados. El uso de paneles perforados con agujeros circulares o con ranuras es discutido. Se presentan diferentes modelos y se proponen algunas modificaciones para mejorar la modelización de los fenómenos físicos que ocurren en las perforaciones. La banda de absorción se ensancha a través del uso de capas múltiples de paneles micro perforados y/o la combinación de un panel de perforaciones milimétricas combinado con una capa porosa que puede ser un material fibroso o una malla de nylon. Se propone el uso de una malla micrométrica detrás de un panel milimétrico como una solución económica y eficiente para el control del ruido en espacios reducidos. El algoritmo de recocido simulado se utiliza con el fin de optimizar la construcción de paneles micro perforados para proporcionar un máximo de absorción en una banda determinada frecuencias. Los experimentos se llevan a cabo en la incidencia normal de sonido y ondas planas. Se muestra un ejemplo de panel micro perforado de doble capa sometido a flujo rasante. Se consigue un buen acuerdo entre la teoría y los experimentos.
Resumo:
La propulsión eléctrica constituye hoy una tecnología muy competitiva y de gran proyección de futuro. Dentro de los diversos motores de plasma existentes, el motor de efecto Hall ha adquirido una gran madurez y constituye un medio de propulsión idóneo para un rango amplio de misiones. En la presente Tesis se estudian los motores Hall con geometría convencional y paredes dieléctricas. La compleja interacción entre los múltiples fenómenos físicos presentes hace que sea difícil la simulación del plasma en estos motores. Los modelos híbridos son los que representan un mejor compromiso entre precisión y tiempo de cálculo. Se basan en utilizar un modelo fluido para los electrones y algoritmos de dinámica de partículas PIC (Particle-In- Cell) para los iones y los neutros. Permiten hacer uso de la hipótesis de cuasineutralidad del plasma, a cambio de resolver separadamente las capas límite (o vainas) que se forman en torno a las paredes de la cámara. Partiendo de un código híbrido existente, llamado HPHall-2, el objetivo de la Tesis doctoral ha sido el desarrollo de un código híbrido avanzado que mejorara la simulación de la descarga de plasma en un motor de efecto Hall. Las actualizaciones y mejoras realizadas en las diferentes partes que componen el código comprenden tanto aspectos teóricos como numéricos. Fruto de la extensa revisión de la algoritmia del código HPHall-2 se han conseguido reducir los errores de precisión un orden de magnitud, y se ha incrementado notablemente su consistencia y robustez, permitiendo la simulación del motor en un amplio rango de condiciones. Algunos aspectos relevantes a destacar en el subcódigo de partículas son: la implementación de un nuevo algoritmo de pesado que permite determinar de forma más precisa el flujo de las magnitudes del plasma; la implementación de un nuevo algoritmo de control de población, que permite tener suficiente número de partículas cerca de las paredes de la cámara, donde los gradientes son mayores y las condiciones de cálculo son más críticas; las mejoras en los balances de masa y energía; y un mejor cálculo del campo eléctrico en una malla no uniforme. Merece especial atención el cumplimiento de la condición de Bohm en el borde de vaina, que en los códigos híbridos representa una condición de contorno necesaria para obtener una solución consistente con el modelo de interacción plasma-pared, y que en HPHall-2 aún no se había resuelto satisfactoriamente. En esta Tesis se ha implementado el criterio cinético de Bohm para una población de iones con diferentes cargas eléctricas y una gran dispersión de velocidades. En el código, el cumplimiento de la condición cinética de Bohm se consigue por medio de un algoritmo que introduce una fina capa de aceleración nocolisional adyacente a la vaina y mide adecuadamente el flujo de partículas en el espacio y en el tiempo. Las mejoras realizadas en el subcódigo de electrones incrementan la capacidad de simulación del código, especialmente en la región aguas abajo del motor, donde se simula la neutralización del chorro del plasma por medio de un modelo de cátodo volumétrico. Sin abordar el estudio detallado de la turbulencia del plasma, se implementan modelos sencillos de ajuste de la difusión anómala de Bohm, que permiten reproducir los valores experimentales del potencial y la temperatura del plasma, así como la corriente de descarga del motor. En cuanto a los aspectos teóricos, se hace especial énfasis en la interacción plasma-pared y en la dinámica de los electrones secundarios libres en el interior del plasma, cuestiones que representan hoy en día problemas abiertos en la simulación de los motores Hall. Los nuevos modelos desarrollados buscan una imagen más fiel a la realidad. Así, se implementa el modelo de vaina de termalización parcial, que considera una función de distribución no-Maxwelliana para los electrones primarios y contabiliza unas pérdidas energéticas más cercanas a la realidad. Respecto a los electrones secundarios, se realiza un estudio cinético simplificado para evaluar su grado de confinamiento en el plasma, y mediante un modelo fluido en el límite no-colisional, se determinan las densidades y energías de los electrones secundarios libres, así como su posible efecto en la ionización. El resultado obtenido muestra que los electrones secundarios se pierden en las paredes rápidamente, por lo que su efecto en el plasma es despreciable, no así en las vainas, donde determinan el salto de potencial. Por último, el trabajo teórico y de simulación numérica se complementa con el trabajo experimental realizado en el Pnnceton Plasma Physics Laboratory, en el que se analiza el interesante transitorio inicial que experimenta el motor en el proceso de arranque. Del estudio se extrae que la presencia de gases residuales adheridos a las paredes juegan un papel relevante, y se recomienda, en general, la purga completa del motor antes del modo normal de operación. El resultado final de la investigación muestra que el código híbrido desarrollado representa una buena herramienta de simulación de un motor Hall. Reproduce adecuadamente la física del motor, proporcionando resultados similares a los experimentales, y demuestra ser un buen laboratorio numérico para estudiar el plasma en el interior del motor. Abstract Electric propulsion is today a very competitive technology and has a great projection into the future. Among the various existing plasma thrusters, the Hall effect thruster has acquired a considerable maturity and constitutes an ideal means of propulsion for a wide range of missions. In the present Thesis only Hall thrusters with conventional geometry and dielectric walls are studied. The complex interaction between multiple physical phenomena makes difficult the plasma simulation in these engines. Hybrid models are those representing a better compromise between precision and computational cost. They use a fluid model for electrons and Particle-In-Cell (PIC) algorithms for ions and neutrals. The hypothesis of plasma quasineutrality is invoked, which requires to solve separately the sheaths formed around the chamber walls. On the basis of an existing hybrid code, called HPHall-2, the aim of this doctoral Thesis is to develop an advanced hybrid code that better simulates the plasma discharge in a Hall effect thruster. Updates and improvements of the code include both theoretical and numerical issues. The extensive revision of the algorithms has succeeded in reducing the accuracy errors in one order of magnitude, and the consistency and robustness of the code have been notably increased, allowing the simulation of the thruster in a wide range of conditions. The most relevant achievements related to the particle subcode are: the implementation of a new weighing algorithm that determines more accurately the plasma flux magnitudes; the implementation of a new algorithm to control the particle population, assuring enough number of particles near the chamber walls, where there are strong gradients and the conditions to perform good computations are more critical; improvements in the mass and energy balances; and a new algorithm to compute the electric field in a non-uniform mesh. It deserves special attention the fulfilment of the Bohm condition at the edge of the sheath, which represents a boundary condition necessary to match consistently the hybrid code solution with the plasma-wall interaction, and remained as a question unsatisfactory solved in the HPHall-2 code. In this Thesis, the kinetic Bohm criterion has been implemented for an ion particle population with different electric charges and a large dispersion in their velocities. In the code, the fulfilment of the kinetic Bohm condition is accomplished by an algorithm that introduces a thin non-collisional layer next to the sheaths, producing the ion acceleration, and measures properly the flux of particles in time and space. The improvements made in the electron subcode increase the code simulation capabilities, specially in the region downstream of the thruster, where the neutralization of the plasma jet is simulated using a volumetric cathode model. Without addressing the detailed study of the plasma turbulence, simple models for a parametric adjustment of the anomalous Bohm difussion are implemented in the code. They allow to reproduce the experimental values of the plasma potential and the electron temperature, as well as the discharge current of the thruster. Regarding the theoretical issues, special emphasis has been made in the plasma-wall interaction of the thruster and in the dynamics of free secondary electrons within the plasma, questions that still remain unsolved in the simulation of Hall thrusters. The new developed models look for results closer to reality, such as the partial thermalization sheath model, that assumes a non-Maxwellian distribution functions for primary electrons, and better computes the energy losses at the walls. The evaluation of secondary electrons confinement within the chamber is addressed by a simplified kinetic study; and using a collisionless fluid model, the densities and energies of free secondary electrons are computed, as well as their effect on the plasma ionization. Simulations show that secondary electrons are quickly lost at walls, with a negligible effect in the bulk of the plasma, but they determine the potential fall at sheaths. Finally, numerical simulation and theoretical work is complemented by the experimental work carried out at the Princeton Plasma Physics Laboratory, devoted to analyze the interesting transitional regime experienced by the thruster in the startup process. It is concluded that the gas impurities adhered to the thruster walls play a relevant role in the transitional regime and, as a general recomendation, a complete purge of the thruster before starting its normal mode of operation it is suggested. The final result of the research conducted in this Thesis shows that the developed code represents a good tool for the simulation of Hall thrusters. The code reproduces properly the physics of the thruster, with results similar to the experimental ones, and represents a good numerical laboratory to study the plasma inside the thruster.
Resumo:
Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos
Resumo:
Analysis of river flow using hydraulic modelling and its implications in derived environ-mental applications are inextricably connected with the way in which the river boundary shape is represented. This relationship is scale-dependent upon the modelling resolution which in turn determines the importance of a subscale performance of the model and the way subscale (surface and flow) processes are parameterised. Commonly, the subscale behaviour of the model relies upon a roughness parameterisation whose meaning depends on the dimensionality of the hydraulic model and the resolution of the topographic represen¬tation scale. This latter is, in turn, dependent on the resolution of the computational mesh as well as on the detail of measured topographic data. Flow results are affected by this interactions between scale and subscale parameterisation according to the dimensionality approach. The aim of this dissertation is the evaluation of these interactions upon hy¬draulic modelling results. Current high resolution topographic source availability induce this research which is tackled using a suitable roughness approach according to each di¬mensionality with the purpose of the interaction assessment. A 1D HEC-RAS model, a 2D raster-based diffusion-wave model with a scale-dependent distributed roughness parame-terisation and a 3D finite volume scheme with a porosity algorithm approach to incorporate complex topography have been used. Different topographic sources are assessed using a 1D scheme. LiDAR data are used to isolate the mesh resolution from the topographic content of the DEM effects upon 2D and 3D flow results. A distributed roughness parameterisation, using a roughness height approach dependent upon both mesh resolution and topographic content is developed and evaluated for the 2D scheme. Grain-size data and fractal methods are used for the reconstruction of topography with microscale information, required for some applications but not easily available. Sensitivity of hydraulic parameters to this topographic parameterisation is evaluated in a 3D scheme at different mesh resolu¬tions. Finally, the structural variability of simulated flow is analysed and related to scale interactions. Model simulations demonstrate (i) the importance of the topographic source in a 1D models; (ii) the mesh resolution approach is dominant in 2D and 3D simulations whereas in a 1D model the topographic source and even the roughness parameterisation impacts are more critical; (iii) the increment of the sensitivity to roughness parameterisa-tion in 1D and 2D schemes with detailed topographic sources and finer mesh resolutions; and (iv) the topographic content and microtopography impact throughout the vertical profile of computed 3D velocity in a depth-dependent way, whereas 2D results are not affected by topographic content variations. Finally, the spatial analysis shows that the mesh resolution controls high resolution model scale results, roughness parameterisation control 2D simulation results for a constant mesh resolution; and topographic content and micro-topography variations impacts upon the organisation of flow results depth-dependently in a 3D scheme. Resumen La topografía juega un papel fundamental en la distribución del agua y la energía en los paisajes naturales (Beven and Kirkby 1979; Wood et al. 1997). La simulación hidráulica combinada con métodos de medición del terreno por teledetección constituyen una poderosa herramienta de investigación en la comprensión del comportamiento de los flujos de agua debido a la variabilidad de la superficie sobre la que fluye. La representación e incorporación de la topografía en el esquema hidráulico tiene una importancia crucial en los resultados y determinan el desarrollo de sus aplicaciones al campo medioambiental. Cualquier simulación es una simplificación de un proceso del mundo real, y por tanto el grado de simplificación determinará el significado de los resultados simulados. Este razonamiento es particularmente difícil de trasladar a la simulación hidráulica donde aspectos de la escala tan diferentes como la escala de los procesos de flujo y de representación del contorno son considerados conjuntamente incluso en fases de parametrización (e.g. parametrización de la rugosidad). Por una parte, esto es debido a que las decisiones de escala vienen condicionadas entre ellas (e.g. la dimensionalidad del modelo condiciona la escala de representación del contorno) y por tanto interaccionan en sus resultados estrechamente. Y por otra parte, debido a los altos requerimientos numéricos y computacionales de una representación explícita de alta resolución de los procesos de flujo y discretización de la malla. Además, previo a la modelización hidráulica, la superficie del terreno sobre la que el agua fluye debe ser modelizada y por tanto presenta su propia escala de representación, que a su vez dependerá de la escala de los datos topográficos medidos con que se elabora el modelo. En última instancia, esta topografía es la que determina el comportamiento espacial del flujo. Por tanto, la escala de la topografía en sus fases de medición y modelización (resolución de los datos y representación topográfica) previas a su incorporación en el modelo hidráulico producirá a su vez un impacto que se acumulará al impacto global resultante debido a la escala computacional del modelo hidráulico y su dimensión. La comprensión de las interacciones entre las complejas geometrías del contorno y la estructura del flujo utilizando la modelización hidráulica depende de las escalas consideradas en la simplificación de los procesos hidráulicos y del terreno (dimensión del modelo, tamaño de escala computacional y escala de los datos topográficos). La naturaleza de la aplicación del modelo hidráulico (e.g. habitat físico, análisis de riesgo de inundaciones, transporte de sedimentos) determina en primer lugar la escala del estudio y por tanto el detalle de los procesos a simular en el modelo (i.e. la dimensionalidad) y, en consecuencia, la escala computacional a la que se realizarán los cálculos (i.e. resolución computacional). Esta última a su vez determina, el detalle geográfico con que deberá representarse el contorno acorde con la resolución de la malla computacional. La parametrización persigue incorporar en el modelo hidráulico la cuantificación de los procesos y condiciones físicas del sistema natural y por tanto debe incluir no solo aquellos procesos que tienen lugar a la escala de modelización, sino también aquellos que tienen lugar a un nivel subescalar y que deben ser definidos mediante relaciones de escalado con las variables modeladas explícitamente. Dicha parametrización se implementa en la práctica mediante la provisión de datos al modelo, por tanto la escala de los datos geográficos utilizados para parametrizar el modelo no sólo influirá en los resultados, sino también determinará la importancia del comportamiento subescalar del modelo y el modo en que estos procesos deban ser parametrizados (e.g. la variabilidad natural del terreno dentro de la celda de discretización o el flujo en las direcciones laterales y verticales en un modelo unidimensional). En esta tesis, se han utilizado el modelo unidimensional HEC-RAS, (HEC 1998b), un modelo ráster bidimensional de propagación de onda, (Yu 2005) y un esquema tridimensional de volúmenes finitos con un algoritmo de porosidad para incorporar la topografía, (Lane et al. 2004; Hardy et al. 2005). La geometría del contorno viene definida por la escala de representación topográfica (resolución de malla y contenido topográfico), la cual a su vez depende de la escala de la fuente cartográfica. Todos estos factores de escala interaccionan en la respuesta del modelo hidráulico a la topografía. En los últimos años, métodos como el análisis fractal y las técnicas geoestadísticas utilizadas para representar y analizar elementos geográficos (e.g. en la caracterización de superficies (Herzfeld and Overbeck 1999; Butler et al. 2001)), están promoviendo nuevos enfoques en la cuantificación de los efectos de escala (Lam et al. 2004; Atkinson and Tate 2000; Lam et al. 2006) por medio del análisis de la estructura espacial de la variable (e.g. Bishop et al. 2006; Ju et al. 2005; Myint et al. 2004; Weng 2002; Bian and Xie 2004; Southworth et al. 2006; Pozd-nyakova et al. 2005; Kyriakidis and Goodchild 2006). Estos métodos cuantifican tanto el rango de valores de la variable presentes a diferentes escalas como la homogeneidad o heterogeneidad de la variable espacialmente distribuida (Lam et al. 2004). En esta tesis, estas técnicas se han utilizado para analizar el impacto de la topografía sobre la estructura de los resultados hidráulicos simulados. Los datos de teledetección de alta resolución y técnicas GIS también están siendo utilizados para la mejor compresión de los efectos de escala en modelos medioambientales (Marceau 1999; Skidmore 2002; Goodchild 2003) y se utilizan en esta tesis. Esta tesis como corpus de investigación aborda las interacciones de esas escalas en la modelización hidráulica desde un punto de vista global e interrelacionado. Sin embargo, la estructura y el foco principal de los experimentos están relacionados con las nociones espaciales de la escala de representación en relación con una visión global de las interacciones entre escalas. En teoría, la representación topográfica debe caracterizar la superficie sobre la que corre el agua a una adecuada (conforme a la finalidad y dimensión del modelo) escala de discretización, de modo que refleje los procesos de interés. La parametrización de la rugosidad debe de reflejar los efectos de la variabilidad de la superficie a escalas de más detalle que aquellas representadas explícitamente en la malla topográfica (i.e. escala de discretización). Claramente, ambos conceptos están físicamente relacionados por un
Resumo:
Mesh adaptation based on error estimation has become a key technique to improve th eaccuracy o fcomputational-fluid-dynamics computations. The adjoint-based approach for error estimation is one of the most promising techniques for computational-fluid-dynamics applications. Nevertheless, the level of implementation of this technique in the aeronautical industrial environment is still low because it is a computationally expensive method. In the present investigation, a new mesh refinement method based on estimation of truncation error is presented in the context of finite-volume discretization. The estimation method uses auxiliary coarser meshes to estimate the local truncation error, which can be used for driving an adaptation algorithm. The method is demonstrated in the context of two-dimensional NACA0012 and three-dimensional ONERA M6 wing inviscid flows, and the results are compared against the adjoint-based approach and physical sensors based on features of the flow field.
Resumo:
An automatic Mesh Generation Preprocessor for BE Programs with a considerable of capabilities has been developed. This program allows almost any kind of geometry and tipology to be defined with a small amount of external data, and with an important approximation of the boundary geometry. Also the error checking possibility is very important for a fast comprobation of the results.
Resumo:
Finite element hp-adaptivity is a technology that allows for very accurate numerical solutions. When applied to open region problems such as radar cross section prediction or antenna analysis, a mesh truncation method needs to be used. This paper compares the following mesh truncation methods in the context of hp-adaptive methods: Infinite Elements, Perfectly Matched Layers and an iterative boundary element based methodology. These methods have been selected because they are exact at the continuous level (a desirable feature required by the extreme accuracy delivered by the hp-adaptive strategy) and they are easy to integrate with the logic of hp-adaptivity. The comparison is mainly based on the number of degrees of freedom needed for each method to achieve a given level of accuracy. Computational times are also included. Two-dimensional examples are used, but the conclusions directly extrapolated to the three dimensional case.
Resumo:
Los dispositivos robóticos se están convirtiendo en una alternativa muy extendida a las terapias de neurorrehabilitación funcional tradicionales al ofrecer una práctica más intensiva sin incrementar el tiempo empleado en la supervisión por parte de los terapeutas especialistas. Por ello, este trabajo de investigación propone un algoritmo de control anticipatorio que, bajo el paradigma 'assisted-as-needed', proporcione a una ortesis robótica las capacidades de actuación necesarias para comportarse tal y como lo haría un terapeuta que proporciona una sesión de terapia manual. Dicho algoritmo de control ha sido validado mediante un simulador robótico obteniéndose resultados que demuestran su eficacia.
Resumo:
A simplified CFD wake model based on the actuator disk concept is used to simulate the wind turbine, represented by a disk upon which a distribution of forces, defined as axial momentum sources, are applied on the incoming non-uniform flow. The rotor is supposed to be uniformly loaded, with the exerted forces function of the incident wind speed, the thrust coefficient and the rotor diameter. The model is tested under different parameterizations of turbulence models and validated through experimental measurements downwind of a wind turbine in terms of wind speed deficit and turbulence intensity.
Resumo:
Resumen: La generalización cartográfica es el proceso que permite la obtención de cartografía derivada a partir de la generada mediante el registro de información geográfica. Normalmente, la generalización implica una reducción de escala, aunque podría ser una reducción de la cantidad de información sin reducir la escala, debido a un cambio de objetivo de la cartografía. La dificultad de la generalización aumenta cuanto menor es la escala destino y mayor la diferencia entre ésta y la escala origen. Estas dificultades se concentran en aquellas entidades que representan objetos modificados por el hombre, es decir, principalmente en los núcleos urbanos, ya que deben preservar ciertas propiedades en su geometría una vez generalizados. En este artículo, se propone un algoritmo para la generalización lineal de núcleos urbanos, basándose en las características constructivas y relacionales de las edificaciones que los conforman. Abstract: Mapping generalization is the process which derived maps are obtained from others generated by recording geographic information. Usually, generalization involves a reduction of scale, although it could be a reduction in the amount of information without reducing the scale, due to a change in target mapping. The smaller target scale, the more difficult is the generalization. Also, the more difference between origin scale and target scale, the more difficult is the generalization. The difficulties are concentrated in entities that represent objects modified by man, mainly in urban areas, as they must preserve certain geometry properties once generalized. In this paper, an algorithm is proposed for linear generalization of urban areas, based on constructive and relational characteristics of the buildings that shape them.