16 resultados para Zeta function, Calabi-Yau Differential equation, Frobenius Polynomial
Resumo:
Una amarra electrodinámica (electrodynamic tether) opera sobre principios electromagnéticos intercambiando momento con la magnetosfera planetaria e interactuando con su ionosfera. Es un subsistema pasivo fiable para desorbitar etapas de cohetes agotadas y satélites al final de su misión, mitigando el crecimiento de la basura espacial. Una amarra sin aislamiento captura electrones del plasma ambiente a lo largo de su segmento polarizado positivamente, el cual puede alcanzar varios kilómetros de longitud, mientras que emite electrones de vuelta al plasma mediante un contactor de plasma activo de baja impedancia en su extremo catódico, tal como un cátodo hueco (hollow cathode). En ausencia de un contactor catódico activo, la corriente que circula por una amarra desnuda en órbita es nula en ambos extremos de la amarra y se dice que ésta está flotando eléctricamente. Para emisión termoiónica despreciable y captura de corriente en condiciones limitadas por movimiento orbital (orbital-motion-limited, OML), el cociente entre las longitudes de los segmentos anódico y catódico es muy pequeño debido a la disparidad de masas entre iones y electrones. Tal modo de operación resulta en una corriente media y fuerza de Lorentz bajas en la amarra, la cual es poco eficiente como dispositivo para desorbitar. El electride C12A7 : e−, que podría presentar una función de trabajo (work function) tan baja como W = 0.6 eV y un comportamiento estable a temperaturas relativamente altas, ha sido propuesto como recubrimiento para amarras desnudas. La emisión termoiónica a lo largo de un segmento así recubierto y bajo el calentamiento de la operación espacial, puede ser más eficiente que la captura iónica. En el modo más simple de fuerza de frenado, podría eliminar la necesidad de un contactor catódico activo y su correspondientes requisitos de alimentación de gas y subsistema de potencia, lo que resultaría en un sistema real de amarra “sin combustible”. Con este recubrimiento de bajo W, cada segmento elemental del segmento catódico de una amarra desnuda de kilómetros de longitud emitiría corriente como si fuese parte de una sonda cilíndrica, caliente y uniformemente polarizada al potencial local de la amarra. La operación es similar a la de una sonda de Langmuir 2D tanto en los segmentos catódico como anódico. Sin embargo, en presencia de emisión, los electrones emitidos resultan en carga espacial (space charge) negativa, la cual reduce el campo eléctrico que los acelera hacia fuera, o incluso puede desacelerarlos y hacerlos volver a la sonda. Se forma una doble vainas (double sheath) estable con electrones emitidos desde la sonda e iones provenientes del plasma ambiente. La densidad de corriente termoiónica, variando a lo largo del segmento catódico, podría seguir dos leyes distintas bajo diferentes condiciones: (i) la ley de corriente limitada por la carga espacial (space-charge-limited, SCL) o (ii) la ley de Richardson-Dushman (RDS). Se presenta un estudio preliminar sobre la corriente SCL frente a una sonda emisora usando la teoría de vainas (sheath) formada por la captura iónica en condiciones OML, y la corriente electrónica SCL entre los electrodos cilíndricos según Langmuir. El modelo, que incluye efectos óhmicos y el efecto de transición de emisión SCL a emisión RDS, proporciona los perfiles de corriente y potencial a lo largo de la longitud completa de la amarra. El análisis muestra que en el modo más simple de fuerza de frenado, bajo condiciones orbitales y de amarras típicas, la emisión termoiónica proporciona un contacto catódico eficiente y resulta en una sección catódica pequeña. En el análisis anterior, tanto la transición de emisión SCL a RD como la propia ley de emisión SCL consiste en un modelo muy simplificado. Por ello, a continuación se ha estudiado con detalle la solución de vaina estacionaria de una sonda con emisión termoiónica polarizada negativamente respecto a un plasma isotrópico, no colisional y sin campo magnético. La existencia de posibles partículas atrapadas ha sido ignorada y el estudio incluye tanto un estudio semi-analítico mediante técnica asintóticas como soluciones numéricas completas del problema. Bajo las tres condiciones (i) alto potencial, (ii) R = Rmax para la validez de la captura iónica OML, y (iii) potencial monotónico, se desarrolla un análisis asintótico auto-consistente para la estructura de plasma compleja que contiene las tres especies de cargas (electrones e iones del plasma, electrones emitidos), y cuatro regiones espaciales distintas, utilizando teorías de movimiento orbital y modelos cinéticos de las especies. Aunque los electrones emitidos presentan carga espacial despreciable muy lejos de la sonda, su efecto no se puede despreciar en el análisis global de la estructura de la vaina y de dos capas finas entre la vaina y la región cuasi-neutra. El análisis proporciona las condiciones paramétricas para que la corriente sea SCL. También muestra que la emisión termoiónica aumenta el radio máximo de la sonda para operar dentro del régimen OML y que la emisión de electrones es mucho más eficiente que la captura iónica para el segmento catódico de la amarra. En el código numérico, los movimientos orbitales de las tres especies son modelados para potenciales tanto monotónico como no-monotónico, y sonda de radio R arbitrario (dentro o más allá del régimen de OML para la captura iónica). Aprovechando la existencia de dos invariante, el sistema de ecuaciones Poisson-Vlasov se escribe como una ecuación integro-diferencial, la cual se discretiza mediante un método de diferencias finitas. El sistema de ecuaciones algebraicas no lineal resultante se ha resuelto de con un método Newton-Raphson paralelizado. Los resultados, comparados satisfactoriamente con el análisis analítico, proporcionan la emisión de corriente y la estructura del plasma y del potencial electrostático. ABSTRACT An electrodynamic tether operates on electromagnetic principles and exchanges momentum through the planetary magnetosphere, by continuously interacting with the ionosphere. It is a reliable passive subsystem to deorbit spent rocket stages and satellites at its end of mission, mitigating the growth of orbital debris. A tether left bare of insulation collects electrons by its own uninsulated and positively biased segment with kilometer range, while electrons are emitted by a low-impedance active device at the cathodic end, such as a hollow cathode, to emit the full electron current. In the absence of an active cathodic device, the current flowing along an orbiting bare tether vanishes at both ends and the tether is said to be electrically floating. For negligible thermionic emission and orbital-motion-limited (OML) collection throughout the entire tether (electron/ion collection at anodic/cathodic segment, respectively), the anodic-to-cathodic length ratio is very small due to ions being much heavier, which results in low average current and Lorentz drag. The electride C12A7 : e−, which might present a possible work function as low as W = 0.6 eV and moderately high temperature stability, has been proposed as coating for floating bare tethers. Thermionic emission along a thus coated cathodic segment, under heating in space operation, can be more efficient than ion collection and, in the simplest drag mode, may eliminate the need for an active cathodic device and its corresponding gas-feed requirements and power subsystem, which would result in a truly “propellant-less” tether system. With this low-W coating, each elemental segment on the cathodic segment of a kilometers-long floating bare-tether would emit current as if it were part of a hot cylindrical probe uniformly polarized at the local tether bias, under 2D probe conditions that are also applied to the anodic-segment analysis. In the presence of emission, emitted electrons result in negative space charge, which decreases the electric field that accelerates them outwards, or even reverses it, decelerating electrons near the emitting probe. A double sheath would be established with electrons being emitted from the probe and ions coming from the ambient plasma. The thermionic current density, varying along the cathodic segment, might follow two distinct laws under different con ditions: i) space-charge-limited (SCL) emission or ii) full Richardson-Dushman (RDS) emission. A preliminary study on the SCL current in front of an emissive probe is presented using the orbital-motion-limited (OML) ion-collection sheath and Langmuir’s SCL electron current between cylindrical electrodes. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects considered and the transition from SCL to full RDS emission is included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission provides efficient cathodic contact and leads to a short cathodic section. In the previous analysis, both the transition between SCL and RDS emission and the current law for SCL condition have used a very simple model. To continue, considering an isotropic, unmagnetized, colissionless plasma and a stationary sheath, the probe-plasma contact is studied in detail for a negatively biased probe with thermionic emission. The possible trapped particles are ignored and this study includes both semianalytical solutions using asymptotic analysis and complete numerical solutions. Under conditions of i) high bias, ii) R = Rmax for ion OML collection validity, and iii) monotonic potential, a self-consistent asymptotic analysis is carried out for the complex plasma structure involving all three charge species (plasma electrons and ions, and emitted electrons) and four distinct spatial regions using orbital motion theories and kinetic modeling of the species. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between the sheath and the quasineutral region. The parametric conditions for the current to be space-chargelimited are obtained. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers. In the numerical code, the orbital motions of all three species are modeled for both monotonic and non-monotonic potential, and for any probe radius R (within or beyond OML regime for ion collection). Taking advantage of two constants of motion (energy and angular momentum), the Poisson-Vlasov equation is described by an integro differential equation, which is discretized using finite difference method. The non-linear algebraic equations are solved using a parallel implementation of the Newton-Raphson method. The results, which show good agreement with the analytical results, provide the results for thermionic current, the sheath structure, and the electrostatic potential.
Resumo:
Combining the kinematical definitions of the two dimensionless parameters, the deceleration q(x) and the Hubble t 0 H(x), we get a differential equation (where x=t/t 0 is the age of the universe relative to its present value t 0). First integration gives the function H(x). The present values of the Hubble parameter H(1) [approximately t 0 H(1)≈1], and the deceleration parameter [approximately q(1)≈−0.5], determine the function H(x). A second integration gives the cosmological scale factor a(x). Differentiation of a(x) gives the speed of expansion of the universe. The evolution of the universe that results from our approach is: an initial extremely fast exponential expansion (inflation), followed by an almost linear expansion (first decelerated, and later accelerated). For the future, at approximately t≈3t 0 there is a final exponential expansion, a second inflation that produces a disaggregation of the universe to infinity. We find the necessary and sufficient conditions for this disaggregation to occur. The precise value of the final age is given only with one parameter: the present value of the deceleration parameter [q(1)≈−0.5]. This emerging picture of the history of the universe represents an important challenge, an opportunity for the immediate research on the Universe. These conclusions have been elaborated without the use of any particular cosmological model of the universe
Resumo:
We consider non-negative solution of a chemotaxis system with non constant chemotaxis sensitivity function X. This system appears as a limit case of a model formorphogenesis proposed by Bollenbach et al. (Phys. Rev. E. 75, 2007).Under suitable boundary conditions, modeling the presence of a morphogen source at x=0, we prove the existence of a global and bounded weak solution using an approximation by problems where diffusion is introduced in the ordinary differential equation. Moreover,we prove the convergence of the solution to the unique steady state provided that ? is small and ? is large enough. Numerical simulations both illustrate these results and give rise to further conjectures on the solution behavior that go beyond the rigorously proved statements.
Resumo:
Abstract?We consider a mathematical model related to the stationary regime of a plasma of fusion nuclear, magnetically confined in a Stellarator device. Using the geometric properties of the fusion device, a suitable system of coordinates and averaging methods, the mathematical problem may be reduced to a two dimensional free boundary problem of nonlocal type, where the corresponding differential equation is of the Grad?Shafranov type. The current balance within each flux magnetic gives us the possibility to define the third covariant magnetic field component with respect to the averaged poloidal flux function. We present here some numerical experiences and we give some numerical approach for the averaged poloidal flux and for the third covariant magnetic field component.
Resumo:
A consistent Finite Element formulation was developed for four classical 1-D beam models. This formulation is based upon the solution of the homogeneous differential equation (or equations) associated with each model. Results such as the shape functions, stiffness matrices and consistent force vectors for the constant section beam were found. Some of these results were compared with the corresponding ones obtained by the standard Finite Element Method (i.e. using polynomial expansions for the field variables). Some of the difficulties reported in the literature concerning some of these models may be avoided by this technique and some numerical sensitivity analysis on this subject are presented.
Resumo:
Esta tesis considera dos tipos de aplicaciones del diseño óptico: óptica formadora de imagen por un lado, y óptica anidólica (nonimaging) o no formadora de imagen, por otro. Las ópticas formadoras de imagen tienen como objetivo la obtención de imágenes de puntos del objeto en el plano de la imagen. Por su parte, la óptica anidólica, surgida del desarrollo de aplicaciones de concentración e iluminación, se centra en la transferencia de energía en forma de luz de forma eficiente. En general, son preferibles los diseños ópticos que den como resultado sistemas compactos, para ambos tipos de ópticas (formadora de imagen y anidólica). En el caso de los sistemas anidólicos, una óptica compacta permite tener costes de producción reducidos. Hay dos razones: (1) una óptica compacta presenta volúmenes reducidos, lo que significa que se necesita menos material para la producción en masa; (2) una óptica compacta es pequeña y ligera, lo que ahorra costes en el transporte. Para los sistemas ópticos de formación de imagen, además de las ventajas anteriores, una óptica compacta aumenta la portabilidad de los dispositivos, que es una gran ventaja en tecnologías de visualización portátiles, tales como cascos de realidad virtual (HMD del inglés Head Mounted Display). Esta tesis se centra por tanto en nuevos enfoques de diseño de sistemas ópticos compactos para aplicaciones tanto de formación de imagen, como anidólicas. Los colimadores son uno de los diseños clásicos dentro la óptica anidólica, y se pueden utilizar en aplicaciones fotovoltaicas y de iluminación. Hay varios enfoques a la hora de diseñar estos colimadores. Los diseños convencionales tienen una relación de aspecto mayor que 0.5. Con el fin de reducir la altura del colimador manteniendo el área de iluminación, esta tesis presenta un diseño de un colimador multicanal. En óptica formadora de imagen, las superficies asféricas y las superficies sin simetría de revolución (o freeform) son de gran utilidad de cara al control de las aberraciones de la imagen y para reducir el número y tamaño de los elementos ópticos. Debido al rápido desarrollo de sistemas de computación digital, los trazados de rayos se pueden realizar de forma rápida y sencilla para evaluar el rendimiento del sistema óptico analizado. Esto ha llevado a los diseños ópticos modernos a ser generados mediante el uso de diferentes técnicas de optimización multi-paramétricas. Estas técnicas requieren un buen diseño inicial como punto de partida para el diseño final, que será obtenido tras un proceso de optimización. Este proceso precisa un método de diseño directo para superficies asféricas y freeform que den como resultado un diseño cercano al óptimo. Un método de diseño basado en ecuaciones diferenciales se presenta en esta tesis para obtener un diseño óptico formado por una superficie freeform y dos superficies asféricas. Esta tesis consta de cinco capítulos. En Capítulo 1, se presentan los conceptos básicos de la óptica formadora de imagen y de la óptica anidólica, y se introducen las técnicas clásicas del diseño de las mismas. El Capítulo 2 describe el diseño de un colimador ultra-compacto. La relación de aspecto ultra-baja de este colimador se logra mediante el uso de una estructura multicanal. Se presentará su procedimiento de diseño, así como un prototipo fabricado y la caracterización del mismo. El Capítulo 3 describe los conceptos principales de la optimización de los sistemas ópticos: función de mérito y método de mínimos cuadrados amortiguados. La importancia de un buen punto de partida se demuestra mediante la presentación de un mismo ejemplo visto a través de diferentes enfoques de diseño. El método de las ecuaciones diferenciales se presenta como una herramienta ideal para obtener un buen punto de partida para la solución final. Además, diferentes técnicas de interpolación y representación de superficies asféricas y freeform se presentan para el procedimiento de optimización. El Capítulo 4 describe la aplicación del método de las ecuaciones diferenciales para un diseño de un sistema óptico de una sola superficie freeform. Algunos conceptos básicos de geometría diferencial son presentados para una mejor comprensión de la derivación de las ecuaciones diferenciales parciales. También se presenta un procedimiento de solución numérica. La condición inicial está elegida como un grado de libertad adicional para controlar la superficie donde se forma la imagen. Basado en este enfoque, un diseño anastigmático se puede obtener fácilmente y se utiliza como punto de partida para un ejemplo de diseño de un HMD con una única superficie reflectante. Después de la optimización, dicho diseño muestra mejor rendimiento. El Capítulo 5 describe el método de las ecuaciones diferenciales ampliado para diseños de dos superficies asféricas. Para diseños ópticos de una superficie, ni la superficie de imagen ni la correspondencia entre puntos del objeto y la imagen pueden ser prescritas. Con esta superficie adicional, la superficie de la imagen se puede prescribir. Esto conduce a un conjunto de tres ecuaciones diferenciales ordinarias implícitas. La solución numérica se puede obtener a través de cualquier software de cálculo numérico. Dicho procedimiento también se explica en este capítulo. Este método de diseño da como resultado una lente anastigmática, que se comparará con una lente aplanática. El diseño anastigmático converge mucho más rápido en la optimización y la solución final muestra un mejor rendimiento. ABSTRACT We will consider optical design from two points of view: imaging optics and nonimaging optics. Imaging optics focuses on the imaging of the points of the object. Nonimaging optics arose from the development of concentrators and illuminators, focuses on the transfer of light energy, and has wide applications in illumination and concentration photovoltaics. In general, compact optical systems are necessary for both imaging and nonimaging designs. For nonimaging optical systems, compact optics use to be important for reducing cost. The reasons are twofold: (1) compact optics is small in volume, which means less material is needed for mass-production; (2) compact optics is small in size and light in weight, which saves cost in transportation. For imaging optical systems, in addition to the above advantages, compact optics increases portability of devices as well, which contributes a lot to wearable display technologies such as Head Mounted Displays (HMD). This thesis presents novel design approaches of compact optical systems for both imaging and nonimaging applications. Collimator is a typical application of nonimaging optics in illumination, and can be used in concentration photovoltaics as well due to the reciprocity of light. There are several approaches for collimator designs. In general, all of these approaches have an aperture diameter to collimator height not greater than 2. In order to reduce the height of the collimator while maintaining the illumination area, a multichannel design is presented in this thesis. In imaging optics, aspheric and freeform surfaces are useful in controlling image aberrations and reducing the number and size of optical elements. Due to the rapid development of digital computing systems, ray tracing can be easily performed to evaluate the performance of optical system. This has led to the modern optical designs created by using different multi-parametric optimization techniques. These techniques require a good initial design to be a starting point so that the final design after optimization procedure can reach the optimum solution. This requires a direct design method for aspheric and freeform surface close to the optimum. A differential equation based design method is presented in this thesis to obtain single freeform and double aspheric surfaces. The thesis comprises of five chapters. In Chapter 1, basic concepts of imaging and nonimaging optics are presented and typical design techniques are introduced. Readers can obtain an understanding for the following chapters. Chapter 2 describes the design of ultra-compact collimator. The ultra-low aspect ratio of this collimator is achieved by using a multichannel structure. Its design procedure is presented together with a prototype and its evaluation. The ultra-compactness of the device has been approved. Chapter 3 describes the main concepts of optimizing optical systems: merit function and Damped Least-Squares method. The importance of a good starting point is demonstrated by presenting an example through different design approaches. The differential equation method is introduced as an ideal tool to obtain a good starting point for the final solution. Additionally, different interpolation and representation techniques for aspheric and freeform surface are presented for optimization procedure. Chapter 4 describes the application of differential equation method in the design of single freeform surface optical system. Basic concepts of differential geometry are presented for understanding the derivation of partial differential equations. A numerical solution procedure is also presented. The initial condition is chosen as an additional freedom to control the image surface. Based on this approach, anastigmatic designs can be readily obtained and is used as starting point for a single reflective surface HMD design example. After optimization, the evaluation shows better MTF. Chapter 5 describes the differential equation method extended to double aspheric surface designs. For single optical surface designs, neither image surface nor the mapping from object to image can be prescribed. With one more surface added, the image surface can be prescribed. This leads to a set of three implicit ordinary differential equations. Numerical solution can be obtained by MATLAB and its procedure is also explained. An anastigmatic lens is derived from this design method and compared with an aplanatic lens. The anastigmatic design converges much faster in optimization and the final solution shows better performance.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos
Resumo:
In this work, novel imaging designs with a single optical surface (either refractive or reflective) are presented. In some of these designs, both object and image shapes are given but mapping from object to image is obtained as a result of the design. In other designs, not only the mapping is obtained in the design process, but also the shape of the object is found. In the examples considered, the image is virtual and located at infinity and is seen from known pupil, which can emulate a human eye. In the first introductory part, 2D designs have been done using three different design methods: a SMS design, a compound Cartesian oval surface, and a differential equation method for the limit case of small pupil. At the point-size pupil limit, it is proven that these three methods coincide. In the second part, previous 2D designs are extended to 3D by rotation and the astigmatism of the image has been studied. As an advanced variation, the differential equation method is used to provide the freedom to control the tangential rays and sagittal rays simultaneously. As a result, designs without astigmatism (at the small pupil limit) on a curved object surface have been obtained. Finally, this anastigmatic differential equation method has been extended to 3D for the general case, in which freeform surfaces are designed.
Resumo:
A hybrid Eulerian-Lagrangian approach is employed to simulate heavy particle dispersion in turbulent pipe flow. The mean flow is provided by the Eulerian simulations developed by mean of JetCode, whereas the fluid fluctuations seen by particles are prescribed by a stochastic differential equation based on normalized Langevin. The statistics of particle velocity are compared to LES data which contain detailed statistics of velocity for particles with diameter equal to 20.4 µm. The model is in good agreement with the LES data for axial mean velocity whereas rms of axial and radial velocities should be adjusted.
Resumo:
The physical appearance of granular media suggests the existence of geometrical scale invariance. The paper discuss how this physico-empirical property can be mathematically encoded leading to different generative models: a smooth one encoded by a differential equation and another encoded by an equation coming from a measure theoretical property.
Resumo:
Una evolución del método de diferencias finitas ha sido el desarrollo del método de diferencias finitas generalizadas (MDFG) que se puede aplicar a mallas irregulares o nubes de puntos. En este método se emplea una expansión en serie de Taylor junto con una aproximación por mínimos cuadrados móviles (MCM). De ese modo, las fórmulas explícitas de diferencias para nubes irregulares de puntos se pueden obtener fácilmente usando el método de Cholesky. El MDFG-MCM es un método sin malla que emplea únicamente puntos. Una contribución de esta Tesis es la aplicación del MDFG-MCM al caso de la modelización de problemas anisótropos elípticos de conductividad eléctrica incluyendo el caso de tejidos reales cuando la dirección de las fibras no es fija, sino que varía a lo largo del tejido. En esta Tesis también se muestra la extensión del método de diferencias finitas generalizadas a la solución explícita de ecuaciones parabólicas anisótropas. El método explícito incluye la formulación de un límite de estabilidad para el caso de nubes irregulares de nodos que es fácilmente calculable. Además se presenta una nueva solución analítica para una ecuación parabólica anisótropa y el MDFG-MCM explícito se aplica al caso de problemas parabólicos anisótropos de conductividad eléctrica. La evidente dificultad de realizar mediciones directas en electrocardiología ha motivado un gran interés en la simulación numérica de modelos cardiacos. La contribución más importante de esta Tesis es la aplicación de un esquema explícito con el MDFG-MCM al caso de la modelización monodominio de problemas de conductividad eléctrica. En esta Tesis presentamos un algoritmo altamente eficiente, exacto y condicionalmente estable para resolver el modelo monodominio, que describe la actividad eléctrica del corazón. El modelo consiste en una ecuación en derivadas parciales parabólica anisótropa (EDP) que está acoplada con un sistema de ecuaciones diferenciales ordinarias (EDOs) que describen las reacciones electroquímicas en las células cardiacas. El sistema resultante es difícil de resolver numéricamente debido a su complejidad. Proponemos un método basado en una separación de operadores y un método sin malla para resolver la EDP junto a un método de Runge-Kutta para resolver el sistema de EDOs de la membrana y las corrientes iónicas. ABSTRACT An evolution of the method of finite differences has been the development of generalized finite difference (GFD) method that can be applied to irregular grids or clouds of points. In this method a Taylor series expansion is used together with a moving least squares (MLS) approximation. Then, the explicit difference formulae for irregular clouds of points can be easily obtained using a simple Cholesky method. The MLS-GFD is a mesh-free method using only points. A contribution of this Thesis is the application of the MLS-GFDM to the case of modelling elliptic anisotropic electrical conductivity problems including the case of real tissues when the fiber direction is not fixed, but varies throughout the tissue. In this Thesis the extension of the generalized finite difference method to the explicit solution of parabolic anisotropic equations is also given. The explicit method includes a stability limit formulated for the case of irregular clouds of nodes that can be easily calculated. Also a new analytical solution for homogeneous parabolic anisotropic equation has been presented and an explicit MLS- GFDM has been applied to the case of parabolic anisotropic electrical conductivity problems. The obvious difficulty of performing direct measurements in electrocardiology has motivated wide interest in the numerical simulation of cardiac models. The main contribution of this Thesis is the application of an explicit scheme based in the MLS-GFDM to the case of modelling monodomain electrical conductivity problems using operator splitting including the case of anisotropic real tissues. In this Thesis we present a highly efficient, accurate and conditionally stable algorithm to solve a monodomain model, which describes the electrical activity in the heart. The model consists of a parabolic anisotropic partial differential equation (PDE), which is coupled to systems of ordinary differential equations (ODEs) describing electrochemical reactions in the cardiac cells. The resulting system is challenging to solve numerically, because of its complexity. We propose a method based on operator splitting and a meshless method for solving the PDE together with a Runge-Kutta method for solving the system of ODE’s for the membrane and ionic currents.
Resumo:
En este proyecto se trata la simulación numérica de un fenómeno dinámico, basado en el comportamiento de una onda transmitida a lo largo de una cuerda elástica de un instrumento musical, cuyos extremos se encuentran anclados. El fenómeno físico, se desarrolla utilizando una ecuación en derivadas parciales hiperbólicas con variables espacial y temporal, acompañada por unas condiciones de contorno tipo Dirichlet en los extremos y por más condiciones iniciales que dan comienzo al proceso. Posteriormente se han generado algoritmos para el método numérico empleado (Diferencias finitas centrales y progresivas) y la programación del problema aproximado con su consistencia, estabilidad y convergencia, obteniéndose unos resultados acordes con la solución analítica del problema matemático. La programación y salida de resultados se ha realizado con Visual Studio 8.0. y la programación de objetos con Visual Basic .Net In this project the topic is the numerical simulation of a dynamic phenomenon, based on the behavior of a transmitted wave along an elastic string of a musical instrument, whose ends are anchored. The physical phenomenon is developed using a hyperbolic partial differential equation with spatial and temporal variables, accompanied by a Dirichlet boundary conditions at the ends and more initial conditions that start the process. Subsequently generated algorithms for the numerical method used (central and forward finite differences) and the programming of the approximate problem with consistency, stability and convergence, yielding results in line with the analytical solution of the mathematical problem. Programming and output results has been made with Visual Studio 8.0. and object programming with Visual Basic. Net
Resumo:
This paper presents a Finite Element Model, which has been used for forecasting the diffusion of innovations in time and space. Unlike conventional models used in diffusion literature, the model considers the spatial heterogeneity. The implementation steps of the model are explained by applying it to the case of diffusion of photovoltaic systems in a local region in southern Germany. The applied model is based on a parabolic partial differential equation that describes the diffusion ratio of photovoltaic systems in a given region over time. The results of the application show that the Finite Element Model constitutes a powerful tool to better understand the diffusion of an innovation as a simultaneous space-time process. For future research, model limitations and possible extensions are also discussed.
Resumo:
We analyze a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite’s temperature is analyzed by qualitative, perturbation and numerical methods, which prove that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.