23 resultados para Thermal behavior


Relevância:

70.00% 70.00%

Publicador:

Resumo:

La envolvente de la edificación es la responsable de equilibrar el intercambio energético entre el interior y el exterior, por lo tanto cualquier actuación encaminada a la reducción del consumo energético ha de establecer, como uno de sus objetivos prioritarios, la mejora del comportamiento de la misma. Las edificaciones anteriores a 1940 constituyen la mayor parte de las existentes en áreas rurales y centros urbanos. En ellas, la repercusión de la fachada sobre las transmitancias globales pone de manifiesto la necesidad de intervención. Sin embargo, su elevada inercia térmica y los importantes saltos térmicos característicos de gran parte de España plantean la importancia de que aquélla se efectúe por el exterior. A tal respecto, la falta de disponibilidad de espesor suficiente para implantar sistemas tipo SATE deriva en que, frecuentemente, la única solución viable sea la de aislar por el interior perdiendo con ello la capacidad de acumulación térmica del muro y con el asociado riesgo de condensaciones. La amplia tradición en el empleo de revestimientos, especialmente en base de cal, permiten que éstos sean utilizados no sólo como elemento estético o de protección de la obra de fábrica antigua sino también para la mejora del comportamiento térmico del soporte, si se aprovecha el mecanismo de transmisión térmica por radiación. Éste es el objetivo de la presente Tesis Doctoral en la que se estudia la modificación de las propiedades radiantes de los morteros de revestimiento para la mejora de la eficiencia energética de las construcciones históricas, principalmente las constituidas por muros monolíticos, aunque podría ser de aplicación a otro tipo de construcciones compuestas por diversas capas. Como punto de partida, se estudió y revisó la documentación disponible sobre las investigaciones de las tres áreas científico-tecnológicas que convergen en la Tesis Doctoral: rehabilitación, material y comportamiento térmico, a partir de lo cual se comprobó la inexistencia de estudios similares al objeto de la presente Tesis Doctoral. Complementariamente, se analizaron los revestimientos en lo concerniente a los materiales que los constituyen, la composición de las mezclas y características de cada una de las capas así como al enfoque que, desde el punto de vista térmico, se estimaba más adecuado para la obtención de los objetivos propuestos. Basándonos en dichos análisis, se preseleccionaron ochenta materiales que fueron ensayados en términos de reflectancia y emisividad para elegir cuatro con los que se continuó la investigación. Éstos, junto con la cal elegida para la investigación y el árido marmóreo característico de la última capa de revestimiento, fueron caracterizados térmicamente, de forma pormenorizada, así como química y físicamente. Los fundamentos teóricos y los estudios preliminares desarrollados con distintos materiales, en estado fresco y endurecido, fueron empleados en la dosificación de componentes de las mezclas, en dos proporciones distintas, para el estudio del efecto del agregado. Éstas se ensayaron en estado fresco, para comprobar su adecuación de puesta en obra y prever su VI adherencia al soporte, así como en estado endurecido a 28 y 90 días de curado, para conocer las propiedades que permitieran prever su compatibilidad con aquél y estimar el alcance de la reducción de transferencias térmicas lograda. Además, se estudiaron las características generales de las mezclas que sirvieron para establecer correlaciones entre distintas propiedades y entender los resultados mecánicos, físicos (comportamiento frente al agua) y energéticos. Del estudio conjunto de las distintas propiedades analizadas se propusieron dos mezclas, una blanca y otra coloreada, cuyas características permiten garantizar la compatibilidad con la obra de fábrica antigua, desde el punto de vista físico y mecánico, y preservar la autenticidad de los revestimientos, en cuanto a la técnica de aplicación tradicional en sistemas multicapa. El comportamiento térmico de las mismas, sobre una obra de fábrica de 40 cm de espesor, se estimó, en estado estacionario y pseudo-transitorio, demostrándose reducciones del flujo térmico entre 16-48%, en condiciones de verano, y entre el 6-11%, en invierno, en función de la coloración y de la rugosidad de la superficie, en comparación con el empleo de la mezcla tradicional. Por lo que, se constata la viabilidad de los materiales compuestos propuestos y su adecuación al objetivo de la investigación. VII ABSTRACT The envelope is responsible for balancing the energy exchange between the inside and outside in buildings. For this reason, any action aimed at reducing energy consumption must establish, as one of its key priorities, its improvement. In rural areas and urban centers, most of the constructions were built before 1940. In them, the impact of the façade on the global transmittance highlights the need for intervention. However, its high thermal inertia and fluctuation of temperatures in the majority of Spain bring up that it should be placed outside the insulation. In this regard, the lack of availability of enough thickness to implement systems such as ETICS results in that often the only viable solution is to isolate the interior, losing thereby the wall’s heat storage capacity with the associated risk of condensation. The tradition in the use of renders, especially lime-based, allows us to use them not only as an aesthetic element or to protect the ancient masonry, but also for improved thermal performance of the support by taking advantage of the heat transfer mechanism by radiation. This is the aim of this Doctoral Thesis in which the modification of the radiative properties of lime mortars for renders to improve the energy efficiency of historic buildings, mainly composed of monolithic walls, is studied, although it could be applied to other structures composed of several layers. As a starting point, the available literature in the three scientific-technological areas that converge at the Doctoral Thesis: rehabilitation, material and thermal behaviour, was reviewed, and confirmed the absence of researches similar to this Doctoral Thesis. Additionally, the renders were studied with regard to the materials that constitute them, the composition of the mixtures and the characteristics of each layer, as well as to the approach which, from a thermal point of view, was deemed the most suitable for achieving the objectives sets. Based on thre aforementioned analysis, eighty materials tested in terms of reflectance and emissivity were pre-selected, to choose four with which the research was continued. Common marble sand, used in the last layer of the renders, together with the appointed materials and hydrated lime were characterized thermally, in detail, as well as chemically and physically. The theoretical bases and preliminary studies with different materials, in fresh and hardened state, were used in the dosage of the composition of the mixtures. In order to study their effect they were used in two different proportions, that is, ten mixtures in total. These were tested in their fresh state to evaluate their setting-up suitability and foresee their adhesion to the support, as well as in their hardened state, at 28 and 90 days of curing, to establish the properties which enabled us to anticipate their compatibility with the old masonry walls and estimate the scope of the reduction of heat transfers achieved. In addition, the general characteristics of the mixtures used to establish correlations and to understand the mechanical, physical and energy results were studied. Two mixtures, one white and one colored, were proposed as the result of the different properties analysed, whose characteristics allow the guarantee of mechanical and physical compatibility VIII with the old masonry and preserve the authenticity of the renders. The thermal behavior of both, applied on a masonry wall 40 cm thick, was estimated at a steady and pseudo-transient state, with heat flow reductions between 16-48% during summertime and 6-11% during wintertime, depending on the color and surface roughness, compared to the use of the traditional mixture. So, the viability of the proposed composite materials and their fitness to the aim of the research are established.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The low frequency modulation of the laser source (menor que30KHz) allows the generation of a pulsed signal that intermittently excites the gold nanorods. The temperature curves obtained for different frequencies and duty cycles of modulation but with equal average power and identical laser parameters, show that the thermal behavior in continuous wave and modulation modes is the same. However, the cell death experiments suggest that the percentage of death is higher in the cases of modulation. This observation allows us to conclude that there are other effects in addition to temperature that contribute to the cellular death. The mechanical effects like sound or pressure waves are expected to be generated from thermal expansion of gold nanorods. In order to study the behavior and magnitude of these processes we have developed a measure device based on ultrasound piezoelectric receivers (25KHz) and a lock-in amplifier that is able to detect the sound waves generated in samples of gold nanorods during laser irradiation providing us a voltage result proportional to the pressure signal. The first results show that the pressure measurements are directly proportional to the concentration of gold nanorods and the laser power, therefore, our present work is focused on determine the real influence of these effects in the cell death process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical hyperthermia systems based on the laser irradiation of gold nanorods seem to be a promising tool in the development of therapies against cancer. After a proof of concept in which the authors demonstrated the efficiency of this kind of systems, a modeling process based on an equivalent thermal-electric circuit has been carried out to determine the thermal parameters of the system and an energy balance obtained from the time-dependent heating and cooling temperature curves of the irradiated samples in order to obtain the photothermal transduction efficiency. By knowing this parameter, it is possible to increase the effectiveness of the treatments, thanks to the possibility of predicting the response of the device depending on the working configuration. As an example, the thermal behavior of two different kinds of nanoparticles is compared. The results show that, under identical conditions, the use of PEGylated gold nanorods allows for a more efficient heating compared with bare nanorods, and therefore, it results in a more effective therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

GaN y AlN son materiales semiconductores piezoeléctricos del grupo III-V. La heterounión AlGaN/GaN presenta una elevada carga de polarización tanto piezoeléctrica como espontánea en la intercara, lo que genera en su cercanía un 2DEG de grandes concentración y movilidad. Este 2DEG produce una muy alta potencia de salida, que a su vez genera una elevada temperatura de red. Las tensiones de puerta y drenador provocan un stress piezoeléctrico inverso, que puede afectar a la carga de polarización piezoeléctrica y así influir la densidad 2DEG y las características de salida. Por tanto, la física del dispositivo es relevante para todos sus aspectos eléctricos, térmicos y mecánicos. En esta tesis se utiliza el software comercial COMSOL, basado en el método de elementos finitos (FEM), para simular el comportamiento integral electro-térmico, electro-mecánico y electro-térmico-mecánico de los HEMTs de GaN. Las partes de acoplamiento incluyen el modelo de deriva y difusión para el transporte electrónico, la conducción térmica y el efecto piezoeléctrico. Mediante simulaciones y algunas caracterizaciones experimentales de los dispositivos, hemos analizado los efectos térmicos, de deformación y de trampas. Se ha estudiado el impacto de la geometría del dispositivo en su auto-calentamiento mediante simulaciones electro-térmicas y algunas caracterizaciones eléctricas. Entre los resultados más sobresalientes, encontramos que para la misma potencia de salida la distancia entre los contactos de puerta y drenador influye en generación de calor en el canal, y así en su temperatura. El diamante posee une elevada conductividad térmica. Integrando el diamante en el dispositivo se puede dispersar el calor producido y así reducir el auto-calentamiento, al respecto de lo cual se han realizado diversas simulaciones electro-térmicas. Si la integración del diamante es en la parte superior del transistor, los factores determinantes para la capacidad disipadora son el espesor de la capa de diamante, su conductividad térmica y su distancia a la fuente de calor. Este procedimiento de disipación superior también puede reducir el impacto de la barrera térmica de intercara entre la capa adaptadora (buffer) y el substrato. La muy reducida conductividad eléctrica del diamante permite que pueda contactar directamente el metal de puerta (muy cercano a la fuente de calor), lo que resulta muy conveniente para reducir el auto-calentamiento del dispositivo con polarización pulsada. Por otra parte se simuló el dispositivo con diamante depositado en surcos atacados sobre el sustrato como caminos de disipación de calor (disipador posterior). Aquí aparece una competencia de factores que influyen en la capacidad de disipación, a saber, el surco atacado contribuye a aumentar la temperatura del dispositivo debido al pequeño tamaño del disipador, mientras que el diamante disminuiría esa temperatura gracias a su elevada conductividad térmica. Por tanto, se precisan capas de diamante relativamente gruesas para reducer ele efecto de auto-calentamiento. Se comparó la simulación de la deformación local en el borde de la puerta del lado cercano al drenador con estructuras de puerta estándar y con field plate, que podrían ser muy relevantes respecto a fallos mecánicos del dispositivo. Otras simulaciones se enfocaron al efecto de la deformación intrínseca de la capa de diamante en el comportamiento eléctrico del dispositivo. Se han comparado los resultados de las simulaciones de la deformación y las características eléctricas de salida con datos experimentales obtenidos por espectroscopía micro-Raman y medidas eléctricas, respectivamente. Los resultados muestran el stress intrínseco en la capa producido por la distribución no uniforme del 2DEG en el canal y la región de acceso. Además de aumentar la potencia de salida del dispositivo, la deformación intrínseca en la capa de diamante podría mejorar la fiabilidad del dispositivo modulando la deformación local en el borde de la puerta del lado del drenador. Finalmente, también se han simulado en este trabajo los efectos de trampas localizados en la superficie, el buffer y la barrera. Las medidas pulsadas muestran que tanto las puertas largas como las grandes separaciones entre los contactos de puerta y drenador aumentan el cociente entre la corriente pulsada frente a la corriente continua (lag ratio), es decir, disminuir el colapse de corriente (current collapse). Este efecto ha sido explicado mediante las simulaciones de los efectos de trampa de superficie. Por su parte, las referidas a trampas en el buffer se enfocaron en los efectos de atrapamiento dinámico, y su impacto en el auto-calentamiento del dispositivo. Se presenta también un modelo que describe el atrapamiento y liberación de trampas en la barrera: mientras que el atrapamiento se debe a un túnel directo del electrón desde el metal de puerta, el desatrapamiento consiste en la emisión del electrón en la banda de conducción mediante túnel asistido por fonones. El modelo también simula la corriente de puerta, debida a la emisión electrónica dependiente de la temperatura y el campo eléctrico. Además, también se ilustra la corriente de drenador dependiente de la temperatura y el campo eléctrico. ABSTRACT GaN and AlN are group III-V piezoelectric semiconductor materials. The AlGaN/GaN heterojunction presents large piezoelectric and spontaneous polarization charge at the interface, leading to high 2DEG density close to the interface. A high power output would be obtained due to the high 2DEG density and mobility, which leads to elevated lattice temperature. The gate and drain biases induce converse piezoelectric stress that can influence the piezoelectric polarization charge and further influence the 2DEG density and output characteristics. Therefore, the device physics is relevant to all the electrical, thermal, and mechanical aspects. In this dissertation, by using the commercial finite-element-method (FEM) software COMSOL, we achieved the GaN HEMTs simulation with electro-thermal, electro-mechanical, and electro-thermo-mechanical full coupling. The coupling parts include the drift-diffusion model for the electron transport, the thermal conduction, and the piezoelectric effect. By simulations and some experimental characterizations, we have studied the device thermal, stress, and traps effects described in the following. The device geometry impact on the self-heating was studied by electro-thermal simulations and electrical characterizations. Among the obtained interesting results, we found that, for same power output, the distance between the gate and drain contact can influence distribution of the heat generation in the channel and thus influence the channel temperature. Diamond possesses high thermal conductivity. Integrated diamond with the device can spread the generated heat and thus potentially reduce the device self-heating effect. Electro-thermal simulations on this topic were performed. For the diamond integration on top of the device (top-side heat spreading), the determinant factors for the heat spreading ability are the diamond thickness, its thermal conductivity, and its distance to the heat source. The top-side heat spreading can also reduce the impact of thermal boundary resistance between the buffer and the substrate on the device thermal behavior. The very low electrical conductivity of diamond allows that it can directly contact the gate metal (which is very close to the heat source), being quite convenient to reduce the self-heating for the device under pulsed bias. Also, the diamond coated in vias etched in the substrate as heat spreading path (back-side heat spreading) was simulated. A competing mechanism influences the heat spreading ability, i.e., the etched vias would increase the device temperature due to the reduced heat sink while the coated diamond would decrease the device temperature due to its higher thermal conductivity. Therefore, relative thick coated diamond is needed in order to reduce the self-heating effect. The simulated local stress at the gate edge of the drain side for the device with standard and field plate gate structure were compared, which would be relevant to the device mechanical failure. Other stress simulations focused on the intrinsic stress in the diamond capping layer impact on the device electrical behaviors. The simulated stress and electrical output characteristics were compared to experimental data obtained by micro-Raman spectroscopy and electrical characterization, respectively. Results showed that the intrinsic stress in the capping layer caused the non-uniform distribution of 2DEG in the channel and the access region. Besides the enhancement of the device power output, intrinsic stress in the capping layer can potentially improve the device reliability by modulating the local stress at the gate edge of the drain side. Finally, the surface, buffer, and barrier traps effects were simulated in this work. Pulsed measurements showed that long gates and distances between gate and drain contact can increase the gate lag ratio (decrease the current collapse). This was explained by simulations on the surface traps effect. The simulations on buffer traps effects focused on illustrating the dynamic trapping/detrapping in the buffer and the self-heating impact on the device transient drain current. A model was presented to describe the trapping and detrapping in the barrier. The trapping was the electron direct tunneling from the gate metal while the detrapping was the electron emission into the conduction band described by phonon-assisted tunneling. The reverse gate current was simulated based on this model, whose mechanism can be attributed to the temperature and electric field dependent electron emission in the barrier. Furthermore, the mechanism of the device bias via the self-heating and electric field impact on the electron emission and the transient drain current were also illustrated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports on the thermal behavior and mechanical properties of nanocomposites based on unsaturated polyester resin (UP) modified with poly(ɛ-caprolactone) (PCL) and reinforced with an organically modified clay (cloisite 30B). To optimize the dispersion of 30B and the mixing of PCL in the UP resin, two different methods were employed to prepare crosslinked UP–PCL-30B hybrid nanocomposites. Besides, two samples of poly(ɛ-caprolactone) of different molecular weight (PCL2: Mn = 2.103g.mol−1 and PCL50: Mn = 5.104g.mol−1) were used at several concentrations (4, 6, 10 wt%). The 30B concentration was 4 wt% in all the nanocomposites. The morphology of the samples was studied by scanning electron microscopy (SEM). The analysis of X-ray patterns reveals that intercalated structures have been found for all ternary nanocomposites, independently of the molecular weight, PCL concentration and the preparation method selected. A slight rise of the glass transition temperature, Tg, is observed in UP/PCL/4%30B ternary nanocomposites regarding to neat UP. The analysis of the tensile properties of the ternary (hybrid) systems indicates that UP/4%PCL2/4%30B nanocomposite improves the tensile strength and elongation at break respect to the neat UP while the Young modulus remains constant

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today, the building sector alone accounts for 40% of the total energy consumption in the European Union (EU). In most EU member states, about 70–90% of the buildings were constructed at least 20 years ago. Due to this, these buildings have a worse energy efficiency behavior than the new ones that comply with current regulations. As a consequence, acting on the existing building stock is needed, developing special methods on assessment and advice in order to reduce the total energy consumption. This article addresses a procedure allowing the classification and characterization of existing buildings facades. It can help researchers to achieve in-depth knowledge of the facades construction and therefore knowing their thermal behavior. Once knowing that, the most appropriate upgrading strategies can be established with the purpose of reducing the energy demand. Furthermore, the classified facade typologies have been verified, complying with current and future Spanish regulations and according to the results obtained, a series of upgrading strategies based on the opaque part and those in the translucent part, have been proposed. As a conclusion, this procedure helps us to select the most appropriate improvement measures for each type of facade in order to comply with current and future Spanish regulations. This proposed method has been tested in a specific neighborhood of Madrid, in a selected period of time, between 1950 and 1980, but it could be applicable to any other city.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta Tesis Doctoral presenta las investigaciones y los trabajos desarrollados durante los años 2008 a 2012 para el análisis y diseño de un patrón primario de ruido térmico de banda ancha en tecnología coaxial. Para ubicar esta Tesis en su campo científico es necesario tomar conciencia de que la realización de mediciones fiables y trazables forma parte del sostenimiento del bienestar de una sociedad moderna y juega un papel crítico en apoyo de la competitividad económica, la fabricación y el comercio, así como de la calidad de vida. En el mundo moderno actual, una infraestructura de medición bien desarrollada genera confianza en muchas facetas de nuestra vida diaria, porque nos permite el desarrollo y fabricación de productos fiables, innovadores y de alta calidad; porque sustenta la competitividad de las industrias y su producción sostenible; además de contribuir a la eliminación de barreras técnicas y de dar soporte a un comercio justo, garantizar la seguridad y eficacia de la asistencia sanitaria, y por supuesto, dar respuesta a los grandes retos de la sociedad moderna en temas tan complicados como la energía y el medio ambiente. Con todo esto en mente se ha desarrollado un patrón primario de ruido térmico con el fin de aportar al sistema metrológico español un nuevo patrón primario de referencia capaz de ser usado para desarrollar mediciones fiables y trazables en el campo de la medida y calibración de dispositivos de ruido electromagnético de radiofrecuencia y microondas. Este patrón se ha planteado para que cumpla en el rango de 10 MHz a 26,5 GHz con las siguientes especificaciones: Salida nominal de temperatura de ruido aproximada de ~ 83 K. Incertidumbre de temperatura de ruido menor que ± 1 K en todo su rango de frecuencias. Coeficiente de reflexión en todo su ancho de banda de 0,01 a 26,5 GHz lo más bajo posible. Se ha divido esta Tesis Doctoral en tres partes claramente diferenciadas. La primera de ellas, que comprende los capítulos 1, 2, 3, 4 y 5, presenta todo el proceso de simulaciones y ajustes de los parámetros principales del dispositivo con el fin de dejar definidos los que resultan críticos en su construcción. A continuación viene una segunda parte compuesta por el capítulo 6 en donde se desarrollan los cálculos necesarios para obtener la temperatura de ruido a la salida del dispositivo. La tercera y última parte, capítulo 7, se dedica a la estimación de la incertidumbre de la temperatura de ruido del nuevo patrón primario de ruido obtenida en el capítulo anterior. Más concretamente tenemos que en el capítulo 1 se hace una exhaustiva introducción del entorno científico en donde se desarrolla este trabajo de investigación. Además se detallan los objetivos que se persiguen y se presenta la metodología utilizada para conseguirlos. El capítulo 2 describe la caracterización y selección del material dieléctrico para el anillo del interior de la línea de transmisión del patrón que ponga en contacto térmico los dos conductores del coaxial para igualar las temperaturas entre ambos y mantener la impedancia característica de todo el patrón primario de ruido. Además se estudian las propiedades dieléctricas del nitrógeno líquido para evaluar su influencia en la impedancia final de la línea de transmisión. En el capítulo 3 se analiza el comportamiento de dos cargas y una línea de aire comerciales trabajando en condiciones criogénicas. Se pretende con este estudio obtener la variación que se produce en el coeficiente de reflexión al pasar de temperatura ambiente a criogénica y comprobar si estos dispositivos resultan dañados por trabajar a temperaturas criogénicas; además se estudia si se modifica su comportamiento tras sucesivos ciclos de enfriamiento – calentamiento, obteniendo una cota de la variación para poder así seleccionar la carga que proporcione un menor coeficiente de reflexión y una menor variabilidad. En el capítulo 4 se parte del análisis de la estructura del anillo de material dieléctrico utilizada en la nota técnica NBS 1074 del NIST con el fin de obtener sus parámetros de dispersión que nos servirán para calcular el efecto que produce sobre el coeficiente de reflexión de la estructura coaxial completa. Además se realiza un estudio posterior con el fin de mejorar el diseño de la nota técnica NBS 1074 del NIST, donde se analiza el anillo de material dieléctrico, para posteriormente realizar modificaciones en la geometría de la zona donde se encuentra éste con el fin de reducir la reflexión que produce. Concretamente se estudia el ajuste del radio del conductor interior en la zona del anillo para que presente la misma impedancia característica que la línea. Y para finalizar se obtiene analíticamente la relación entre el radio del conductor interior y el radio de la transición de anillo térmico para garantizar en todo punto de esa transición la misma impedancia característica, manteniendo además criterios de robustez del dispositivo y de fabricación realistas. En el capítulo 5 se analiza el comportamiento térmico del patrón de ruido y su influencia en la conductividad de los materiales metálicos. Se plantean las posibilidades de que el nitrógeno líquido sea exterior a la línea o que éste penetre en su interior. En ambos casos, dada la simetría rotacional del problema, se ha simulado térmicamente una sección de la línea coaxial, es decir, se ha resuelto un problema bidimensional, aunque los resultados son aplicables a la estructura real tridimensional. Para la simulación térmica se ha empleado la herramienta PDE Toolbox de Matlab®. En el capítulo 6 se calcula la temperatura de ruido a la salida del dispositivo. Se parte del estudio de la aportación a la temperatura de ruido final de cada sección que compone el patrón. Además se estudia la influencia de las variaciones de determinados parámetros de los elementos que conforman el patrón de ruido sobre las características fundamentales de éste, esto es, el coeficiente de reflexión a lo largo de todo el dispositivo. Una vez descrito el patrón de ruido electromagnético se procede, en el capítulo 7, a describir los pasos seguidos para estimar la incertidumbre de la temperatura de ruido electromagnético a su salida. Para ello se utilizan dos métodos, el clásico de la guía para la estimación de la incertidumbre [GUM95] y el método de simulación de Monte Carlo. En el capítulo 8 se describen las conclusiones y lo logros conseguidos. Durante el desarrollo de esta Tesis Doctoral se ha obtenido un dispositivo novedoso susceptible de ser patentado, que ha sido registrado en la Oficina Española de Patentes y Marcas (O.E.P.M.) en Madrid, de conformidad con lo establecido en el artículo 20 de la Ley 11/1986, de 20 de Marzo, de Patentes, con el título Patrón Primario de Ruido Térmico de Banda Ancha (Referencia P-101061) con fecha 7 de febrero de 2011. ABSTRACT This Ph. D. work describes a number of investigations that were performed along the years 2008 to 2011, as a preparation for the study and design of a coaxial cryogenic reference noise standard. Reliable and traceable measurement underpins the welfare of a modern society and plays a critical role in supporting economic competitiveness, manufacturing and trade as well as quality of life. In our modern world, a well developed measurement infrastructure gives confidence in many aspects of our daily life, for example by enabling the development and manufacturing of reliable, high quality and innovative products; by supporting industry to be competitive and sustainable in its production; by removing technical barriers to trade and supporting fair trade; by ensuring safety and effectiveness of healthcare; by giving response to the major challenges in key sectors such energy and environment, etc. With all this in mind we have developed a primary standard thermal noise with the aim of providing the Spanish metrology system with a new primary standard for noise reference. This standard will allow development of reliable and traceable measurements in the field of calibration and measurement of electromagnetic noise RF and microwave devices. This standard has been designed to work in the frequency range from 10 MHz to 26.5 GHz, meeting the following specifications: 1. Noise temperature output is to be nominally ~ 83 K. 2. Noise temperature uncertainty less than ± 1 K in the frequency range from 0.01 to 26.5 GHz. 3. Broadband performance requires as low a reflection coefficient as possible from 0.01 to 26.5 GHz. The present Ph. D. work is divided into three clearly differentiated parts. The first one, which comprises Chapters 1 to 5, presents the whole process of simulation and adjustment of the main parameters of the device in order to define those of them which are critical for the manufacturing of the device. Next, the second part consists of Chapter 6 where the necessary computations to obtain the output noise temperature of the device are carried out. The third and last part, Chapter 7, is devoted to the estimation of the uncertainty related to the noise temperature of the noise primary standard as obtained in the preceding chapter. More specifically, Chapter 1 provides a thorough introduction to the scientific and technological environment where this research takes place. It also details the objectives to be achieved and presents the methodology used to achieve them. Chapter 2 describes the characterization and selection of the bead dielectric material inside the transmission line, intended to connect the two coaxial conductors equalizing the temperature between the two of them and thus keeping the characteristic impedance constant for the whole standard. In addition the dielectric properties of liquid nitrogen are analyzed in order to assess their influence on the impedance of the transmission line. Chapter 3 analyzes the behavior of two different loads and of a commercial airline when subjected to cryogenic working conditions. This study is intended to obtain the variation in the reflection coefficient when the temperature changes from room to cryogenic temperature, and to check whether these devices can be damaged as a result of working at cryogenic temperatures. Also we try to see whether the load changes its behavior after successive cycles of cooling / heating, in order to obtain a bound for the allowed variation of the reflection coefficient of the load. Chapter 4 analyzes the ring structure of the dielectric material used in the NBS technical note 1074 of NIST, in order to obtain its scattering parameters that will be used for computation of its effect upon the reflection coefficient of the whole coaxial structure. Subsequently, we perform a further investigation with the aim of improving the design of NBS technical note 1074 of NIST, and modifications are introduced in the geometry of the transition area in order to reduce the reflection it produces. We first analyze the ring, specifically the influence of the radius of inner conductor of the bead, and then make changes in its geometry so that it presents the same characteristic impedance as that of the line. Finally we analytically obtain the relationship between the inner conductor radius and the radius of the transition from ring, in order to ensure the heat flow through the transition thus keeping the same reflection coefficient, and at the same time meeting the robustness requirements and the feasibility of manufacturing. Chapter 5 analyzes the thermal behavior of the noise standard and its influence on the conductivity of metallic materials. Both possibilities are raised that the liquid nitrogen is kept outside the line or that it penetrates inside. In both cases, given the rotational symmetry of the structure, we have simulated a section of coaxial line, i.e. the equivalent two-dimensional problem has been resolved, although the results are applicable to the actual three-dimensional structure. For thermal simulation Matlab™ PDE Toolbox has been used. In Chapter 6 we compute the output noise temperature of the device. The starting point is the analysis of the contribution to the overall noise temperature of each section making up the standard. Moreover the influence of the variations in the parameters of all elements of the standard is analyzed, specifically the variation of the reflection coefficient along the entire device. Once the electromagnetic noise standard has been described and analyzed, in Chapter 7 we describe the steps followed to estimate the uncertainty of the output electromagnetic noise temperature. This is done using two methods, the classic analytical approach following the Guide to the Estimation of Uncertainty [GUM95] and numerical simulations made with the Monte Carlo method. Chapter 8 discusses the conclusions and achievements. During the development of this thesis, a novel device was obtained which was potentially patentable, and which was finally registered through the Spanish Patent and Trademark Office (SPTO) in Madrid, in accordance with the provisions of Article 20 of Law 11/1986 about Patents, dated March 20th, 1986. It was registered under the denomination Broadband Thermal Noise Primary Standard (Reference P-101061) dated February 7th, 2011.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dry sewage sludge are being considered as a possible energy source for direct firing. They have interesting properties to be used as an alternative fuel, but also other characteristics must be considered from the point of view of its safe operation: the most important are ignition sensitivity, explosion severity, thermal sensitivity and thermal stability. The aim of this study was to determine if sewage sludge have different characteristics due to different locations or seasons and how this influences their flammability properties. To study these characteristics sludge samples were selected from different locations in Spain, taken during different seasons. In addition, relationships between flammability parameters and chemical analysis were observed. Some parameters can be controlled during normal operation, such as granulometry or humidity, and may mean a decrease in the risk of explosion. Those relationships are well known for other dusts materials, like coal, but not yet for sewage sludge dusts. Finally, properties related to spontaneous combustion were determined (thermal susceptibility and stability). The addition of those properties to the study provides an overview of the thermal behavior of sewage sludge during their utilization, including transport and storage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los recientes desarrollos tecnológicos permiten la transición de la oceanografía observacional desde un concepto basado en buques a uno basado en sistemas autónomos en red. Este último, propone que la forma más eficiente y efectiva de observar el océano es con una red de plataformas autónomas distribuidas espacialmente y complementadas con sistemas de medición remota. Debido a su maniobrabilidad y autonomía, los planeadores submarinos están jugando un papel relevante en este concepto de observaciones en red. Los planeadores submarinos fueron específicamente diseñados para muestrear vastas zonas del océano. Estos son robots con forma de torpedo que hacen uso de su forma hidrodinámica, alas y cambios de flotabilidad para generar movimientos horizontales y verticales en la columna de agua. Un sensor que mide conductividad, temperatura y profundidad (CTD) constituye un equipamiento estándar en la plataforma. Esto se debe a que ciertas variables dinámicas del Océano se pueden derivar de la temperatura, profundidad y salinidad. Esta última se puede estimar a partir de las medidas de temperatura y conductividad. La integración de sensores CTD en planeadores submarinos no esta exenta de desafíos. Uno de ellos está relacionado con la precisión de los valores de salinidad derivados de las muestras de temperatura y conductividad. Específicamente, las estimaciones de salinidad están significativamente degradadas por el retardo térmico existente, entre la temperatura medida y la temperatura real dentro de la celda de conductividad del sensor. Esta deficiencia depende de las particularidades del flujo de entrada al sensor, su geometría y, también se ha postulado, del calor acumulado en las capas de aislamiento externo del sensor. Los efectos del retardo térmico se suelen mitigar mediante el control del flujo de entrada al sensor. Esto se obtiene generalmente mediante el bombeo de agua a través del sensor o manteniendo constante y conocida su velocidad. Aunque recientemente se han incorporado sistemas de bombeo en los CTDs a bordo de los planeadores submarinos, todavía existen plataformas equipadas con CTDs sin dichos sistemas. En estos casos, la estimación de la salinidad supone condiciones de flujo de entrada al sensor, razonablemente controladas e imperturbadas. Esta Tesis investiga el impacto, si existe, que la hidrodinámica de los planeadores submarinos pudiera tener en la eficiencia de los sensores CTD. Específicamente, se investiga primero la localización del sensor CTD (externo al fuselaje) relativa a la capa límite desarrollada a lo largo del cuerpo del planeador. Esto se lleva a cabo mediante la utilización de un modelo acoplado de fluido no viscoso con un modelo de capa límite implementado por el autor, así como mediante un programa comercial de dinámica de fluidos computacional (CFD). Los resultados indican, en ambos casos, que el sensor CTD se encuentra fuera de la capa límite, siendo las condiciones del flujo de entrada las mismas que las del flujo sin perturbar. Todavía, la velocidad del flujo de entrada al sensor CTD es la velocidad de la plataforma, la cual depende de su hidrodinámica. Por tal motivo, la investigación se ha extendido para averiguar el efecto que la velocidad de la plataforma tiene en la eficiencia del sensor CTD. Con este propósito, se ha desarrollado un modelo en elementos finitos del comportamiento hidrodinámico y térmico del flujo dentro del CTD. Los resultados numéricos indican que el retardo térmico, atribuidos originalmente a la acumulación de calor en la estructura del sensor, se debe fundamentalmente a la interacción del flujo que atraviesa la celda de conductividad con la geometría interna de la misma. Esta interacción es distinta a distintas velocidades del planeador submarino. Específicamente, a velocidades bajas del planeador (0.2 m/s), la mezcla del flujo entrante con las masas de agua remanentes en el interior de la celda, se ralentiza debido a la generación de remolinos. Se obtienen entonces desviaciones significantes entre la salinidad real y aquella estimada. En cambio, a velocidades más altas del planeador (0.4 m/s) los procesos de mezcla se incrementan debido a la turbulencia e inestabilidades. En consecuencia, la respuesta del sensor CTD es mas rápida y las estimaciones de la salinidad mas precisas que en el caso anterior. Para completar el trabajo, los resultados numéricos se han validado con pruebas experimentales. Específicamente, se ha construido un modelo a escala del sensor CTD para obtener la confirmación experimental de los modelos numéricos. Haciendo uso del principio de similaridad de la dinámica que gobierna los fluidos incompresibles, los experimentos se han realizado con flujos de aire. Esto simplifica significativamente la puesta experimental y facilita su realización en condiciones con medios limitados. Las pruebas experimentales han confirmado cualitativamente los resultados numéricos. Más aun, se sugiere en esta Tesis que la respuesta del sensor CTD mejoraría significativamente añadiendo un generador de turbulencia en localizaciones adecuadas al interno de la celda de conductividad. ABSTRACT Recent technological developments allow the transition of observational oceanography from a ship-based to a networking concept. The latter suggests that the most efficient and effective way to observe the Ocean is through a fleet of spatially distributed autonomous platforms complemented by remote sensing. Due to their maneuverability, autonomy and endurance at sea, underwater gliders are already playing a significant role in this networking observational approach. Underwater gliders were specifically designed to sample vast areas of the Ocean. These are robots with a torpedo shape that make use of their hydrodynamic shape, wings and buoyancy changes to induce horizontal and vertical motions through the water column. A sensor to measure the conductivity, temperature and depth (CTD) is a standard payload of this platform. This is because certain ocean dynamic variables can be derived from temperature, depth and salinity. The latter can be inferred from measurements of temperature and conductivity. Integrating CTD sensors in glider platforms is not exempted of challenges. One of them, concerns to the accuracy of the salinity values derived from the sampled conductivity and temperature. Specifically, salinity estimates are significantly degraded by the thermal lag response existing between the measured temperature and the real temperature inside the conductivity cell of the sensor. This deficiency depends on the particularities of the inflow to the sensor, its geometry and, it has also been hypothesized, on the heat accumulated by the sensor coating layers. The effects of thermal lag are usually mitigated by controlling the inflow conditions through the sensor. Controlling inflow conditions is usually achieved by pumping the water through the sensor or by keeping constant and known its diving speed. Although pumping systems have been recently implemented in CTD sensors on board gliders, there are still platforms with unpumped CTDs. In the latter case, salinity estimates rely on assuming reasonable controlled and unperturbed flow conditions at the CTD sensor. This Thesis investigates the impact, if any, that glider hydrodynamics may have on the performance of onboard CTDs. Specifically, the location of the CTD sensor (external to the hull) relative to the boundary layer developed along the glider fuselage, is first investigated. This is done, initially, by applying a coupled inviscid-boundary layer model developed by the author, and later by using a commercial software for computational fluid dynamics (CFD). Results indicate, in both cases, that the CTD sensor is out of the boundary layer, being its inflow conditions those of the free stream. Still, the inflow speed to the CTD sensor is the speed of the platform, which largely depends on its hydrodynamic setup. For this reason, the research has been further extended to investigate the effect of the platform speed on the performance of the CTD sensor. A finite element model of the hydrodynamic and thermal behavior of the flow inside the CTD sensor, is developed for this purpose. Numerical results suggest that the thermal lag effect is mostly due to the interaction of the flow through the conductivity cell and its geometry. This interaction is different at different speeds of the glider. Specifically, at low glider speeds (0.2 m/s), the mixing of recent and old waters inside the conductivity cell is slowed down by the generation of coherent eddy structures. Significant departures between real and estimated values of the salinity are found. Instead, mixing is enhanced by turbulence and instabilities for high glider speeds (0.4 m/s). As a result, the thermal response of the CTD sensor is faster and the salinity estimates more accurate than for the low speed case. For completeness, numerical results have been validated against model tests. Specifically, a scaled model of the CTD sensor was built to obtain experimental confirmation of the numerical results. Making use of the similarity principle of the dynamics governing incompressible fluids, experiments are carried out with air flows. This significantly simplifies the experimental setup and facilitates its realization in a limited resource condition. Model tests qualitatively confirm the numerical findings. Moreover, it is suggested in this Thesis that the response of the CTD sensor would be significantly improved by adding small turbulators at adequate locations inside the conductivity cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indium nitride (InN) has been the subject of intense research in recent years. Some of its most attractive features are its excellent transport properties such as its small band edge electron effective mass, high electron mobilities and peak drift velocities, and high frequency transient drift velocity oscillations [1]. These suggest enormous potential applications for InN in high frequency electronic devices. But to date the high unintentional bulk electron concentration (n~1018 cm-3) of undoped InN samples and the surface electron accumulation layer make it a hard task to create a reliable metalsemiconductor Schottky barrier. Some attempts have been made to overcome this problem by means of material oxidation [2] or deposition of insulators [3]. In this work we present a way to obtain an electrical rectification behaviour by means of heterojunction growth. Due to the big band gap differences among nitride semiconductors, it’s possible to create a structure with high band offsets. In InN/GaN heterojunctions, depending on the GaN doping, the magnitude of conduction and valence band offset are critical parameters which allow distinguishing among different electrical behaviours. The earliest estimate of the valence band offset at an InN–GaN heterojunction in a wurtzite structure was measured to be ~0.85 eV [4], while the Schottky barrier heights were determined to be ~ 1,4 eV [5].We grew In-face InN layer with varying thickness (between 150 nm and 1 mm) by plasma assisted molecular beam epitaxy (PA-MBE) on GaNntemplates (GaN/Al2O3), with temperatures ranging between 300°C and 450°C. The different doping in GaN template (Si doping, Fe doping and Mg doping) results in differences in band alignments of the two semiconductors changing electrical barriers for carriers and consequently electrical conduction behaviour. The processing of the devices includes metallization of the ohmic contacts on InN and GaN, for which we used Ti/Al/Ni/Au. Whereas an ohmic contact on InN is straightforward, the main issue was the fabrication of the contact on GaN due to the very low decomposition temperature of InN. A standard ohmic contact on GaN is generally obtained by high temperature rapid thermal annealing (RTA), typically done between 500ºC and 900ºC[6]. In this case, the limitation due to the presence of In-face InN imposes an upper limit on the temperature for the thermal annealing process and ohmic contact formation of about 450°C. We will present results on the morphology of the InN layers by X-Ray diffraction and SEM, and electrical measurements, in particular current-voltage and capacitance-voltage characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of fly ash (FA) as an admixture to concrete is broadly extended for two main reasons: the reduction of costs that supposes the substitution of cement and the micro structural changes motivated by the mineral admixture. Regarding this second point, there is a consensus that considers that the ash generates a more compact concrete and a reduction in the size of the pore. However, the measure in which this contributes to the pozzolanic activity or as filler is not well defined. There is also no justification to the influence of the physical parameters, fineness of the grain and free water, in its behavior. This work studies the use of FA as a partial substitute of the cement in concretes of different workability (dry and wet) and the influence in the reactivity of the ash. The concrete of dry consistency which serves as reference uses a cement dose of 250 Kg/m 3 and the concrete of fluid consistency utilized a dose of cement of 350 Kg/m 3 . Two trademark of Portland Cement Type 1 were used. The first reached the resistant class for its fineness of grain and the second one for its composition. Moreover, three doses of FA have been used, and the water/binder ratio was constant in all the mixtures. We have studied the mechanical properties and the micro-structure of the concretes by means of compressive strength tests, mercury intrusion porosimetry (MIP) and thermal analysis (TA). The results of compressive strength tests allow us to observe that concrete mixtures with cements of the same classification and similar dosage of binder do not present the same mechanical behavior. These results show that the effective water/binder ratio has a major role in the development of the mechanical properties of concrete. The study of different dosages using TA, thermo-gravimetry and differential thermal analysis, revealed that the portlandite content is not restrictive in any of the dosages studied. Again, this proves that the rheology of the material influences the reaction rate and content of hydrated cement products. We conclude that the available free water is determinant in the efficiency of pozzolanic reaction. It is so that in accordance to the availability of free water, the ashes can react as an active admixture or simply change the porous distribution. The MIP shows concretes that do not exhibit significant changes in their mechanical behavior, but have suffered significant variation in their porous structure

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AlGaN/GaN high electron mobility transistors (HEMT) are key devices for the next generation of high-power, high-frequency and high-temperature electronics applications. Although significant progress has been recently achieved [1], stability and reliability are still some of the main issues under investigation, particularly at high temperatures [2-3]. Taking into account that the gate contact metallization is one of the weakest points in AlGaN/GaN HEMTs, the reliability of Ni, Mo, Pt and refractory metal gates is crucial [4-6]. This work has been focused on the thermal stress and reliability assessment of AlGaN/GaN HEMTs. After an unbiased storage at 350 o C for 2000 hours, devices with Ni/Au gates exhibited detrimental IDS-VDS degradation in pulsed mode. In contrast, devices with Mo/Au gates showed no degradation after similar storage conditions. Further capacitance-voltage characterization as a function of temperature and frequency revealed two distinct trap-related effects in both kinds of devices. At low frequency (< 1MHz), increased capacitance near the threshold voltage was present at high temperatures and more pronounced for the Ni/Au gate HEMT and as the frequency is lower. Such an anomalous “bump” has been previously related to H-related surface polar charges [7]. This anomalous behavior in the C-V characteristics was also observed in Mo/Au gate HEMTs after 1000 h at a calculated channel temperatures of around from 250 o C (T2) up to 320 ºC (T4), under a DC bias (VDS= 25 V, IDS= 420 mA/mm) (DC-life test). The devices showed a higher “bump” as the channel temperature is higher (Fig. 1). At 1 MHz, the higher C-V curve slope of the Ni/Au gated HEMTs indicated higher trap density than Mo/Au metallization (Fig. 2). These results highlight that temperature is an acceleration factor in the device degradation, in good agreement with [3]. Interface state density analysis is being performed in order to estimate the trap density and activation energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La temperatura es una preocupación que juega un papel protagonista en el diseño de circuitos integrados modernos. El importante aumento de las densidades de potencia que conllevan las últimas generaciones tecnológicas ha producido la aparición de gradientes térmicos y puntos calientes durante el funcionamiento normal de los chips. La temperatura tiene un impacto negativo en varios parámetros del circuito integrado como el retardo de las puertas, los gastos de disipación de calor, la fiabilidad, el consumo de energía, etc. Con el fin de luchar contra estos efectos nocivos, la técnicas de gestión dinámica de la temperatura (DTM) adaptan el comportamiento del chip en función en la información que proporciona un sistema de monitorización que mide en tiempo de ejecución la información térmica de la superficie del dado. El campo de la monitorización de la temperatura en el chip ha llamado la atención de la comunidad científica en los últimos años y es el objeto de estudio de esta tesis. Esta tesis aborda la temática de control de la temperatura en el chip desde diferentes perspectivas y niveles, ofreciendo soluciones a algunos de los temas más importantes. Los niveles físico y circuital se cubren con el diseño y la caracterización de dos nuevos sensores de temperatura especialmente diseñados para los propósitos de las técnicas DTM. El primer sensor está basado en un mecanismo que obtiene un pulso de anchura variable dependiente de la relación de las corrientes de fuga con la temperatura. De manera resumida, se carga un nodo del circuito y posteriormente se deja flotando de tal manera que se descarga a través de las corrientes de fugas de un transistor; el tiempo de descarga del nodo es la anchura del pulso. Dado que la anchura del pulso muestra una dependencia exponencial con la temperatura, la conversión a una palabra digital se realiza por medio de un contador logarítmico que realiza tanto la conversión tiempo a digital como la linealización de la salida. La estructura resultante de esta combinación de elementos se implementa en una tecnología de 0,35 _m. El sensor ocupa un área muy reducida, 10.250 nm2, y consume muy poca energía, 1.05-65.5nW a 5 muestras/s, estas cifras superaron todos los trabajos previos en el momento en que se publicó por primera vez y en el momento de la publicación de esta tesis, superan a todas las implementaciones anteriores fabricadas en el mismo nodo tecnológico. En cuanto a la precisión, el sensor ofrece una buena linealidad, incluso sin calibrar; se obtiene un error 3_ de 1,97oC, adecuado para tratar con las aplicaciones de DTM. Como se ha explicado, el sensor es completamente compatible con los procesos de fabricación CMOS, este hecho, junto con sus valores reducidos de área y consumo, lo hacen especialmente adecuado para la integración en un sistema de monitorización de DTM con un conjunto de monitores empotrados distribuidos a través del chip. Las crecientes incertidumbres de proceso asociadas a los últimos nodos tecnológicos comprometen las características de linealidad de nuestra primera propuesta de sensor. Con el objetivo de superar estos problemas, proponemos una nueva técnica para obtener la temperatura. La nueva técnica también está basada en las dependencias térmicas de las corrientes de fuga que se utilizan para descargar un nodo flotante. La novedad es que ahora la medida viene dada por el cociente de dos medidas diferentes, en una de las cuales se altera una característica del transistor de descarga |la tensión de puerta. Este cociente resulta ser muy robusto frente a variaciones de proceso y, además, la linealidad obtenida cumple ampliamente los requisitos impuestos por las políticas DTM |error 3_ de 1,17oC considerando variaciones del proceso y calibrando en dos puntos. La implementación de la parte sensora de esta nueva técnica implica varias consideraciones de diseño, tales como la generación de una referencia de tensión independiente de variaciones de proceso, que se analizan en profundidad en la tesis. Para la conversión tiempo-a-digital, se emplea la misma estructura de digitalización que en el primer sensor. Para la implementación física de la parte de digitalización, se ha construido una biblioteca de células estándar completamente nueva orientada a la reducción de área y consumo. El sensor resultante de la unión de todos los bloques se caracteriza por una energía por muestra ultra baja (48-640 pJ) y un área diminuta de 0,0016 mm2, esta cifra mejora todos los trabajos previos. Para probar esta afirmación, se realiza una comparación exhaustiva con más de 40 propuestas de sensores en la literatura científica. Subiendo el nivel de abstracción al sistema, la tercera contribución se centra en el modelado de un sistema de monitorización que consiste de un conjunto de sensores distribuidos por la superficie del chip. Todos los trabajos anteriores de la literatura tienen como objetivo maximizar la precisión del sistema con el mínimo número de monitores. Como novedad, en nuestra propuesta se introducen nuevos parámetros de calidad aparte del número de sensores, también se considera el consumo de energía, la frecuencia de muestreo, los costes de interconexión y la posibilidad de elegir diferentes tipos de monitores. El modelo se introduce en un algoritmo de recocido simulado que recibe la información térmica de un sistema, sus propiedades físicas, limitaciones de área, potencia e interconexión y una colección de tipos de monitor; el algoritmo proporciona el tipo seleccionado de monitor, el número de monitores, su posición y la velocidad de muestreo _optima. Para probar la validez del algoritmo, se presentan varios casos de estudio para el procesador Alpha 21364 considerando distintas restricciones. En comparación con otros trabajos previos en la literatura, el modelo que aquí se presenta es el más completo. Finalmente, la última contribución se dirige al nivel de red, partiendo de un conjunto de monitores de temperatura de posiciones conocidas, nos concentramos en resolver el problema de la conexión de los sensores de una forma eficiente en área y consumo. Nuestra primera propuesta en este campo es la introducción de un nuevo nivel en la jerarquía de interconexión, el nivel de trillado (o threshing en inglés), entre los monitores y los buses tradicionales de periféricos. En este nuevo nivel se aplica selectividad de datos para reducir la cantidad de información que se envía al controlador central. La idea detrás de este nuevo nivel es que en este tipo de redes la mayoría de los datos es inútil, porque desde el punto de vista del controlador sólo una pequeña cantidad de datos |normalmente sólo los valores extremos| es de interés. Para cubrir el nuevo nivel, proponemos una red de monitorización mono-conexión que se basa en un esquema de señalización en el dominio de tiempo. Este esquema reduce significativamente tanto la actividad de conmutación sobre la conexión como el consumo de energía de la red. Otra ventaja de este esquema es que los datos de los monitores llegan directamente ordenados al controlador. Si este tipo de señalización se aplica a sensores que realizan conversión tiempo-a-digital, se puede obtener compartición de recursos de digitalización tanto en tiempo como en espacio, lo que supone un importante ahorro de área y consumo. Finalmente, se presentan dos prototipos de sistemas de monitorización completos que de manera significativa superan la características de trabajos anteriores en términos de área y, especialmente, consumo de energía. Abstract Temperature is a first class design concern in modern integrated circuits. The important increase in power densities associated to recent technology evolutions has lead to the apparition of thermal gradients and hot spots during run time operation. Temperature impacts several circuit parameters such as speed, cooling budgets, reliability, power consumption, etc. In order to fight against these negative effects, dynamic thermal management (DTM) techniques adapt the behavior of the chip relying on the information of a monitoring system that provides run-time thermal information of the die surface. The field of on-chip temperature monitoring has drawn the attention of the scientific community in the recent years and is the object of study of this thesis. This thesis approaches the matter of on-chip temperature monitoring from different perspectives and levels, providing solutions to some of the most important issues. The physical and circuital levels are covered with the design and characterization of two novel temperature sensors specially tailored for DTM purposes. The first sensor is based upon a mechanism that obtains a pulse with a varying width based on the variations of the leakage currents on the temperature. In a nutshell, a circuit node is charged and subsequently left floating so that it discharges away through the subthreshold currents of a transistor; the time the node takes to discharge is the width of the pulse. Since the width of the pulse displays an exponential dependence on the temperature, the conversion into a digital word is realized by means of a logarithmic counter that performs both the timeto- digital conversion and the linearization of the output. The structure resulting from this combination of elements is implemented in a 0.35_m technology and is characterized by very reduced area, 10250 nm2, and power consumption, 1.05-65.5 nW at 5 samples/s, these figures outperformed all previous works by the time it was first published and still, by the time of the publication of this thesis, they outnumber all previous implementations in the same technology node. Concerning the accuracy, the sensor exhibits good linearity, even without calibration it displays a 3_ error of 1.97oC, appropriate to deal with DTM applications. As explained, the sensor is completely compatible with standard CMOS processes, this fact, along with its tiny area and power overhead, makes it specially suitable for the integration in a DTM monitoring system with a collection of on-chip monitors distributed across the chip. The exacerbated process fluctuations carried along with recent technology nodes jeop-ardize the linearity characteristics of the first sensor. In order to overcome these problems, a new temperature inferring technique is proposed. In this case, we also rely on the thermal dependencies of leakage currents that are used to discharge a floating node, but now, the result comes from the ratio of two different measures, in one of which we alter a characteristic of the discharging transistor |the gate voltage. This ratio proves to be very robust against process variations and displays a more than suficient linearity on the temperature |1.17oC 3_ error considering process variations and performing two-point calibration. The implementation of the sensing part based on this new technique implies several issues, such as the generation of process variations independent voltage reference, that are analyzed in depth in the thesis. In order to perform the time-to-digital conversion, we employ the same digitization structure the former sensor used. A completely new standard cell library targeting low area and power overhead is built from scratch to implement the digitization part. Putting all the pieces together, we achieve a complete sensor system that is characterized by ultra low energy per conversion of 48-640pJ and area of 0.0016mm2, this figure outperforms all previous works. To prove this statement, we perform a thorough comparison with over 40 works from the scientific literature. Moving up to the system level, the third contribution is centered on the modeling of a monitoring system consisting of set of thermal sensors distributed across the chip. All previous works from the literature target maximizing the accuracy of the system with the minimum number of monitors. In contrast, we introduce new metrics of quality apart form just the number of sensors; we consider the power consumption, the sampling frequency, the possibility to consider different types of monitors and the interconnection costs. The model is introduced in a simulated annealing algorithm that receives the thermal information of a system, its physical properties, area, power and interconnection constraints and a collection of monitor types; the algorithm yields the selected type of monitor, the number of monitors, their position and the optimum sampling rate. We test the algorithm with the Alpha 21364 processor under several constraint configurations to prove its validity. When compared to other previous works in the literature, the modeling presented here is the most complete. Finally, the last contribution targets the networking level, given an allocated set of temperature monitors, we focused on solving the problem of connecting them in an efficient way from the area and power perspectives. Our first proposal in this area is the introduction of a new interconnection hierarchy level, the threshing level, in between the monitors and the traditional peripheral buses that applies data selectivity to reduce the amount of information that is sent to the central controller. The idea behind this new level is that in this kind of networks most data are useless because from the controller viewpoint just a small amount of data |normally extreme values| is of interest. To cover the new interconnection level, we propose a single-wire monitoring network based on a time-domain signaling scheme that significantly reduces both the switching activity over the wire and the power consumption of the network. This scheme codes the information in the time domain and allows a straightforward obtention of an ordered list of values from the maximum to the minimum. If the scheme is applied to monitors that employ TDC, digitization resource sharing is achieved, producing an important saving in area and power consumption. Two prototypes of complete monitoring systems are presented, they significantly overcome previous works in terms of area and, specially, power consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A broadband primary standard for thermal noise measurements is presented and its thermal and electromagnetic behavior is analyzed by means of analytical and numerical simulation techniques. It consists of a broadband termination connected to a 3.5mm coaxial airline partially immersed in liquid Nitrogen. The main innovative part of the device is the thermal bead between inner and outer conductors, designed for obtaining a proper thermal contact and to keep low both its contribution to the total thermal noise and its reflectivity. A sensitivity analysis is realized in order to fix the manufacturing tolerances for a proper performance in the range 10MHz¿26.5GHz.