30 resultados para Surface boundary layer (SBL)
Resumo:
A simplified CFD wake model based on the actuator disk concept is used to simulate the wind turbine, represented by a disk upon which a distribution of forces, defined as axial momentum sources, are applied on the incoming non-uniform flow. The rotor is supposed to be uniformly loaded, with the exerted forces function of the incident wind speed, the thrust coefficient and the rotor diameter. The model is tested under different parameterizations of turbulence models and validated through experimental measurements downwind of a wind turbine in terms of wind speed deficit and turbulence intensity.
Linear global instability of non-orthogonal incompressible swept attachment-line boundary layer flow
Resumo:
Instability of the orthogonal swept attachment line boundary layer has received attention by local1, 2 and global3–5 analysis methods over several decades, owing to the significance of this model to transition to turbulence on the surface of swept wings. However, substantially less attention has been paid to the problem of laminar flow instability in the non-orthogonal swept attachment-line boundary layer; only a local analysis framework has been employed to-date.6 The present contribution addresses this issue from a linear global (BiGlobal) instability analysis point of view in the incompressible regime. Direct numerical simulations have also been performed in order to verify the analysis results and unravel the limits of validity of the Dorrepaal basic flow7 model analyzed. Cross-validated results document the effect of the angle _ on the critical conditions identified by Hall et al.1 and show linear destabilization of the flow with decreasing AoA, up to a limit at which the assumptions of the Dorrepaal model become questionable. Finally, a simple extension of the extended G¨ortler-H¨ammerlin ODE-based polynomial model proposed by Theofilis et al.4 is presented for the non-orthogonal flow. In this model, the symmetries of the three-dimensional disturbances are broken by the non-orthogonal flow conditions. Temporal and spatial one-dimensional linear eigenvalue codes were developed, obtaining consistent results with BiGlobal stability analysis and DNS. Beyond the computational advantages presented by the ODE-based model, it allows us to understand the functional dependence of the three-dimensional disturbances in the non-orthogonal case as well as their connections with the disturbances of the orthogonal stability problem.
Resumo:
Typical streak computations present in the literature correspond to linear streaks or to small amplitude nonlinear streaks computed using DNS or nonlinear PSE. We use the Reduced Navier-Stokes (RNS) equations to compute the streamwise evolution of fully non-linear streaks with high amplitude in a laminar flat plate boundary layer. The RNS formulation provides Reynolds number independent solutions that are asymptotically exact in the limit $Re \gg 1$, it requires much less computational effort than DNS, and it does not have the consistency and convergence problems of the PSE. We present various streak computations to show that the flow configuration changes substantially when the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, that end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results.
Resumo:
Instability analysis of compressible orthogonal swept leading-edge boundary layer flow was performed in the context of BiGlobal linear theory. 1, 2 An algorithm was developed exploiting the sparsity characteristics of the matrix discretizing the PDE-based eigenvalue problem. This allowed use of the MUMPS sparse linear algebra package 3 to obtain a direct solution of the linear systems associated with the Arnoldi iteration. The developed algorithm was then applied to efficiently analyze the effect of compressibility on the stability of the swept leading-edge boundary layer and obtain neutral curves of this flow as a function of the Mach number in the range 0 ≤ Ma ≤ 1. The present numerical results fully confirmed the asymptotic theory results of Theofilis et al. 4 Up to the maximum Mach number value studied, it was found that an increase of this parameter reduces the critical Reynolds number and the range of the unstable spanwise wavenumbers.
Resumo:
En esta tesis se integran numéricamente las ecuaciones reducidas de Navier Stokes (RNS), que describen el flujo en una capa límite tridimensional que presenta también una escala característica espacial corta en el sentido transversal. La formulación RNS se usa para el cálculo de “streaks” no lineales de amplitud finita, y los resultados conseguidos coinciden con los existentes en la literatura, obtenidos típicamente utilizando simulación numérica directa (DNS) o nonlinear parabolized stability equations (PSE). El cálculo de los “streaks” integrando las RNS es mucho menos costoso que usando DNS, y no presenta los problemas de estabilidad que aparecen en la formulación PSE cuando la amplitud del “streak” deja de ser pequeña. El código de integración RNS se utiliza también para el cálculo de los “streaks” que aparecen de manera natural en el borde de ataque de una placa plana en ausencia de perturbaciones en la corriente uniforme exterior. Los resultados existentes hasta ahora calculaban estos “streaks” únicamente en el límite lineal (amplitud pequeña), y en esta tesis se lleva a cabo el cálculo de los mismos en el régimen completamente no lineal (amplitud finita). En la segunda parte de la tesis se generaliza el código RNS para incluir la posibilidad de tener una placa no plana, con curvatura en el sentido transversal que varía lentamente en el sentido de la corriente. Esto se consigue aplicando un cambio de coordenadas, que transforma el dominio físico en uno rectangular. La formulación RNS se integra también expresada en las correspondientes coordenadas curvilíneas. Este código generalizado RNS se utiliza finalmente para estudiar el flujo de capa límite sobre una placa con surcos que varían lentamente en el sentido de la corriente, y es usado para simular el flujo sobre surcos que crecen en tal sentido. Abstract In this thesis, the reduced Navier Stokes (RNS) equations are numerically integrated. This formulation describes the flow in a three-dimensional boundary layer that also presents a short characteristic space scale in the spanwise direction. RNS equations are used to calculate nonlinear finite amplitude “streaks”, and the results agree with those reported in the literature, typically obtained using direct numerical simulation (DNS) or nonlinear parabolized stability equations (PSE). “Streaks” simulations through the RNS integration are much cheaper than using DNS, and avoid stability problems that appear in the PSE when the amplitude of the “streak” is not small. The RNS integration code is also used to calculate the “streaks” that naturally emerge at the leading edge of a flat plate boundary layer in the absence of any free stream perturbations. Up to now, the existing results for these “streaks” have been only calculated in the linear limit (small amplitude), and in this thesis their calculation is carried out in the fully nonlinear regime (finite amplitude). In the second part of the thesis, the RNS code is generalized to include the possibility of having a non-flat plate, curved in the spanwise direction and slowly varying in the streamwise direction. This is achieved by applying a change of coordinates, which transforms the physical domain into a rectangular one. The RNS formulation expressed in the corresponding curvilinear coordinates is also numerically integrated. This generalized RNS code is finally used to study the boundary layer flow over a plate with grooves which vary slowly in the streamwise direction; and this code is used to simulate the flow over grooves that grow in the streamwise direction.
Resumo:
The aim of this thesis is to study the mechanisms of instability that occur in swept wings when the angle of attack increases. For this, a simplified model for the a simplified model for the non-orthogonal swept leading edge boundary layer has been used as well as different numerical techniques in order to solve the linear stability problem that describes the behavior of perturbations superposed upon this base flow. Two different approaches, matrix-free and matrix forming methods, have been validated using direct numerical simulations with spectral resolution. In this way, flow instability in the non-orthogonal swept attachment-line boundary layer is addressed in a linear analysis framework via the solution of the pertinent global (Bi-Global) PDE-based eigenvalue problem. Subsequently, a simple extension of the extended G¨ortler-H¨ammerlin ODEbased polynomial model proposed by Theofilis, Fedorov, Obrist & Dallmann (2003) for orthogonal flow, which includes previous models as particular cases and recovers global instability analysis results, is presented for non-orthogonal flow. Direct numerical simulations have been used to verify the stability results and unravel the limits of validity of the basic flow model analyzed. The effect of the angle of attack, AoA, on the critical conditions of the non-orthogonal problem has been documented; an increase of the angle of attack, from AoA = 0 (orthogonal flow) up to values close to _/2 which make the assumptions under which the basic flow is derived questionable, is found to systematically destabilize the flow. The critical conditions of non-orthogonal flows at 0 _ AoA _ _/2 are shown to be recoverable from those of orthogonal flow, via a simple analytical transformation involving AoA. These results can help to understand the mechanisms of destabilization that occurs in the attachment line of wings at finite angles of attack. Studies taking into account variations of the pressure field in the basic flow or the extension to compressible flows are issues that remain open. El objetivo de esta tesis es estudiar los mecanismos de la inestabilidad que se producen en ciertos dispositivos aerodinámicos cuando se aumenta el ángulo de ataque. Para ello se ha utilizado un modelo simplificado del flujo de base, así como diferentes técnicas numéricas, con el fin de resolver el problema de estabilidad lineal asociado que describe el comportamiento de las perturbaciones. Estos métodos; sin y con formación de matriz, se han validado utilizando simulaciones numéricas directas con resolución espectral. De esta manera, la inestabilidad del flujo de capa límite laminar oblicuo entorno a la línea de estancamiento se aborda en un marco de análisis lineal por medio del método Bi-Global de resolución del problema de valores propios en derivadas parciales. Posteriormente se propone una extensión simple para el flujo no-ortogonal del modelo polinomial de ecuaciones diferenciales ordinarias, G¨ortler-H¨ammerlin extendido, propuesto por Theofilis et al. (2003) para el flujo ortogonal, que incluye los modelos previos como casos particulares y recupera los resultados del analisis global de estabilidad lineal. Se han realizado simulaciones directas con el fin de verificar los resultados del análisis de estabilidad así como para investigar los límites de validez del modelo de flujo base utilizado. En este trabajo se ha documentado el efecto del ángulo de ataque AoA en las condiciones críticas del problema no ortogonal obteniendo que el incremento del ángulo de ataque, de AoA = 0 (flujo ortogonal) hasta valores próximos a _/2, en el cual las hipótesis sobre las que se basa el flujo base dejan de ser válidas, tiende sistemáticamente a desestabilizar el flujo. Las condiciones críticas del caso no ortogonal 0 _ AoA _ _/2 pueden recuperarse a partir del caso ortogonal mediante el uso de una transformación analítica simple que implica el ángulo de ataque AoA. Estos resultados pueden ayudar a comprender los mecanismos de desestabilización que se producen en el borde de ataque de las alas de los aviones a ángulos de ataque finitos. Como tareas pendientes quedaría realizar estudios que tengan en cuenta variaciones del campo de presión en el flujo base así como la extensión de éste al caso de flujos compresibles.
Resumo:
The nonlinear streamwise growth of a spanwise periodic array of steady streaks in a flat plate boundary layer is numerically computed using the well known Reduced Navier-Stokes formulation. It is found that the flow configuration changes substantially when the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-spanwise plane), which is normally not considered, becomes non-negligible in the nonlinear regime, and it strongly distorts the streamwise velocity profiles, which end up being quite different from those predicted by the linear theory. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks, and compare them with available experimental results.
Resumo:
This paper is concerned with the low dimensional structure of optimal streaks in a wedge flow boundary layer, which have been recently shown to consist of a unique (up to a constant factor) three-dimensional streamwise evolving mode, known as the most unstable streaky mode. Optimal streaks exhibit a still unexplored/unexploited approximate self-similarity (not associated with the boundary layer self-similarity), namely the streamwise velocity re-scaled with their maximum remains almost independent of both the spanwise wavenumber and the streamwise coordinate; the remaining two velocity components instead do not satisfy this property. The approximate self-similar behavior is analyzed here and exploited to further simplify the description of optimal streaks. In particular, it is shown that streaks can be approximately described in terms of the streamwise evolution of the scalar amplitudes of just three one-dimensional modes, providing the wall normal profiles of the streamwise velocity and two combinations of the cross flow velocity components; the scalar amplitudes obey a singular system of three ordinary differential equations (involving only two degrees of freedom), which approximates well the streamwise evolution of the general streaks.
Resumo:
The nonlinear streamwise growth of a spanwise periodic array of steady streaks in a flat plate boundary layer is numerically computed using the well known Reduced Navier- Stokes formulation. It is found that the flow configuration changes substantially when the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-spanwise plane), which is normally not considered, becomes non-negligible in the nonlinear regime, and it strongly distorts the streamwise velocity profiles, which end up being quite different from those predicted by the linear theory. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks, and compare them with available experimental results.
Resumo:
This paper is concerned with the low dimensional structure of optimal streaks in the Blasius boundary layer. Optimal streaks are well known to exhibit an approximate self-similarity, namely the streamwise velocity re-scaled with their maximum remains almost independent of both the spanwise wavenumber and the streamwise coordinate. However, the reason of this self-similar behavior is still unexplained as well as unexploited. After revisiting the structure of the streaks near the leading edge singularity, two additional approximately self-similar relations involving the velocity components and their wall normal derivatives are identified. Based on these properties, we derive a low dimensional model with two degrees of freedom. The comparison with the results obtained from the linearized boundary layer equations shows that this model is consistent and provide good approximations.
Resumo:
An elliptic computational fluid dynamics wake model based on the actuator disk concept is used to simulate a wind turbine, approximated by a disk upon which a distribution of forces, defined as axial momentum sources, is applied on an incoming non-uniform shear flow. The rotor is supposed to be uniformly loaded with the exerted forces estimated as a function of the incident wind speed, thrust coefficient and rotor diameter. The model is assessed in terms of wind speed deficit and added turbulence intensity for different turbulence models and is validated from experimental measurements of the Sexbierum wind turbine experiment.
Resumo:
The structure of the atmospheric boundary layer (ABL) is modelled with the limited- length-scale k-ε model of Apsley and Castro. Contrary to the standard k-ε model, the limited-length-scale k-ε model imposes a maximum mixing length which is derived from the boundary layer height, for neutral and unstable atmospheric situations, or by Monin-Obukhov length when the atmosphere is stably stratified. The model is first verified reproducing the famous Leipzig wind profile. Then the performance of the model is tested with measurements from FINO-1 platform using sonic anemometers to derive the appropriate maximum mixing length.
Resumo:
The linear instability and breakdown to turbulence induced by an isolated roughness element in a boundary layer at Mach 2:5, over an isothermal flat plate with laminar adiabatic wall temperature, have been analysed by means of direct numerical simulations, aided by spatial BiGlobal and three-dimensional parabolized (PSE-3D) stability analyses. It is important to understand transition in this flow regime since the process can be slower than in incompressible flow and is crucial to prediction of local heat loads on next-generation flight vehicles. The results show that the roughness element, with a height of the order of the boundary layer displacement thickness, generates a highly unstable wake, which is composed of a low-velocity streak surrounded by a three-dimensional high-shear layer and is able to sustain the rapid growth of a number of instability modes. The most unstable of these modes are associated with varicose or sinuous deformations of the low-velocity streak; they are a consequence of the instability developing in the three-dimensional shear layer as a whole (the varicose mode) or in the lateral shear layers (the sinuous mode). The most unstable wake mode is of the varicose type and grows on average 17% faster tan the most unstable sinuous mode and 30 times faster than the most unstable boundary layer mode occurring in the absence of a roughness element. Due to the high growthrates registered in the presence of the roughness element, an amplification factor of N D 9 is reached within 50 roughness heights from the roughness trailing edge. The independently performed Navier–Stokes, spatial BiGlobal and PSE-3D stability results are in excellent agreement with each other, validating the use of simplified theories for roughness-induced transition involving wake instabilities. Following the linear stages of the laminar–turbulent transition process, the roll-up of the three-dimensional shear layer leads to the formation of a wedge of turbulence, which spreads laterally at a rate similar to that observed in the case of compressible turbulent spots for the same Mach number.
Resumo:
In this work, the Reduced Navier Stokes (RNS) are numerically integrated, and used to calculate nonlinear finite amplitude streaks. These structures are interesting since they can have a stabilizing effect and delay the transition to the turbulent regime. RNS formulation is also used to compute the family of nonlinear intrinsic streaks that emerge from the leading edge in absence of any external perturbation. Finally, this formulation is generalized to include the possibility of having a curved bottom wall
Resumo:
Esta tesis estudia el comportamiento de la región exterior de una capa límite turbulenta sin gradientes de presiones. Se ponen a prueba dos teorías relativamente bien establecidas. La teoría de semejanza para la pared supone que en el caso de haber una pared rugosa, el fluido sólo percibe el cambio en la fricción superficial que causa, y otros efectos secundarios quedarán confinados a una zona pegada a la pared. El consenso actual es que dicha teoría es aproximadamente cierta. En el extremo exterior de la capa límite existe una región producida por la interacción entre las estructuras turbulentas y el flujo irrotacional de la corriente libre llamada interfaz turbulenta/no turbulenta. La mayoría de los resultados al respecto sugieren la presencia de fuerzas de cortadura ligeramente más intensa, lo que la hace distinta al resto del flujo turbulento. Las propiedades de esa región probablemente cambien si la velocidad de crecimiento de la capa límite aumenta, algo que puede conseguirse aumentando la fricción en la pared. La rugosidad y la ingestión de masa están entonces relacionadas, y el comportamiento local de la interfaz turbulenta/no turbulenta puede explicar el motivo por el que las capas límite sobre paredes rugosas no se comportan como en el caso de tener paredes lisas precisamente en la zona exterior. Para estudiar las capas límite a números de Reynolds lo suficientemente elevados, se ha desarrollado un nuevo código de alta resolución para la simulación numérica directa de capas límite turbulentas sin gradiente de presión. Dicho código es capaz de simular capas límite en un intervalo de números de Reynolds entre ReT = 100 — 2000 manteniendo una buena escalabilidad hasta los dos millones de hilos en superordenadores de tipo Blue Gene/Q. Se ha guardado especial atención a la generación de condiciones de contorno a la entrada correctas. Los resultados obtenidos están en concordancia con los resultados previos, tanto en el caso de simulaciones como de experimentos. La interfaz turbulenta/no turbulenta de una capa límite se ha analizado usando un valor umbral del módulo de la vorticidad. Dicho umbral se considera un parámetro para analizar cada superficie obtenida de un contorno del módulo de la vorticidad. Se han encontrado dos regímenes distintos en función del umbral escogido con propiedades opuestas, separados por una transición topológica gradual. Las características geométricas de la zona escalan con o99 cuando u^/isdgg es la unidad de vorticidad. Las propiedades del íluido relativas a la posición del contorno de vorticidad han sido analizados para una serie de umbrales utilizando el campo de distancias esféricas, que puede obtenerse con independencia de la complejidad de la superficie de referencia. Las propiedades del fluido a una distancia dada del inerfaz también dependen del umbral de vorticidad, pero tienen características parecidas con independencia del número de Reynolds. La interacción entre la turbulencia y el flujo no turbulento se restringe a una zona muy fina con un espesor del orden de la escala de Kolmogorov local. Hacia el interior del flujo turbulento las propiedades son indistinguibles del resto de la capa límite. Se ha simulado una capa límite sin gradiente de presiones con una fuerza volumétrica cerca de la pared. La el forzado ha sido diseñado para aumentar la fricción en la pared sin introducir ningún efecto geométrico obvio. La simulación consta de dos dominios, un primer dominio más pequeño y a baja resolución que se encarga de generar condiciones de contorno correctas, y un segundo dominio mayor y a alta resolución donde se aplica el forzado. El estudio de los perfiles y los coeficientes de autocorrelación sugieren que los dos casos, el liso y el forzado, no colapsan más allá de la capa logarítmica por la complejidad geométrica de la zona intermitente, y por el hecho que la distancia a la pared no es una longitud característica. Los efectos causados por la geometría de la zona intermitente pueden evitarse utilizando el interfaz como referencia, y la distancia esférica para el análisis de sus propiedades. Las propiedades condicionadas del flujo escalan con 5QQ y u/uT, las dos únicas escalas contenidas en el modelo de semejanza de pared de Townsend, consistente con estos resultados. ABSTRACT This thesis studies the characteristics of the outer region of zero-pressure-gradient turbulent boundary layers at moderate Reynolds numbers. Two relatively established theories are put to test. The wall similarity theory states that with the presence of roughness, turbulent motion is mostly affected by the additional drag caused by the roughness, and that other secondary effects are restricted to a region very close to the wall. The consensus is that this theory is valid, but only as a first approximation. At the edge of the boundary layer there is a thin layer caused by the interaction between the turbulent eddies and the irroational fluid of the free stream, called turbulent/non-turbulent interface. The bulk of results about this layer suggest the presence of some localized shear, with properties that make it distinguishable from the rest of the turbulent flow. The properties of the interface are likely to change if the rate of spread of the turbulent boundary layer is amplified, an effect that is usually achieved by increasing the drag. Roughness and entrainment are therefore linked, and the local features of the turbulent/non-turbulent interface may explain the reason why rough-wall boundary layers deviate from the wall similarity theory precisely far from the wall. To study boundary layers at a higher Reynolds number, a new high-resolution code for the direct numerical simulation of a zero pressure gradient turbulent boundary layers over a flat plate has been developed. This code is able to simulate a wide range of Reynolds numbers from ReT =100 to 2000 while showing a linear weak scaling up to around two million threads in the BG/Q architecture. Special attention has been paid to the generation of proper inflow boundary conditions. The results are in good agreement with existing numerical and experimental data sets. The turbulent/non-turbulent interface of a boundary layer is analyzed by thresholding the vorticity magnitude field. The value of the threshold is considered a parameter in the analysis of the surfaces obtained from isocontours of the vorticity magnitude. Two different regimes for the surface can be distinguished depending on the threshold, with a gradual topological transition across which its geometrical properties change significantly. The width of the transition scales well with oQg when u^/udgg is used as a unit of vorticity. The properties of the flow relative to the position of the vorticity magnitude isocontour are analyzed within the same range of thresholds, using the ball distance field, which can be obtained regardless of the size of the domain and complexity of the interface. The properties of the flow at a given distance to the interface also depend on the threshold, but they are similar regardless of the Reynolds number. The interaction between the turbulent and the non-turbulent flow occurs in a thin layer with a thickness that scales with the Kolmogorov length. Deeper into the turbulent side, the properties are undistinguishable from the rest of the turbulent flow. A zero-pressure-gradient turbulent boundary layer with a volumetric near-wall forcing has been simulated. The forcing has been designed to increase the wall friction without introducing any obvious geometrical effect. The actual simulation is split in two domains, a smaller one in charge of the generation of correct inflow boundary conditions, and a second and larger one where the forcing is applied. The study of the one-point and twopoint statistics suggest that the forced and the smooth cases do not collapse beyond the logarithmic layer may be caused by the geometrical complexity of the intermittent region, and by the fact that the scaling with the wall-normal coordinate is no longer present. The geometrical effects can be avoided using the turbulent/non-turbulent interface as a reference frame, and the minimum distance respect to it. The conditional analysis of the vorticity field with the alternative reference frame recovers the scaling with 5QQ and v¡uT already present in the logarithmic layer, the only two length-scales allowed if Townsend’s wall similarity hypothesis is valid.