46 resultados para Sports facilities -- Heating and ventilation
Resumo:
Final lenses in laser fusion plants. Challenges for the protection of the final lenses. Plasmonic nanoparticles. Radiation resistance
Resumo:
The performance of a CATR relies on the planarity of the synthesized test wave, which is generated within a bounded volume for which specifications are drawn. Millimetre-wave facilities deal with the classical limitations of this frequency band, among which two become critical in our analysis: time-extensive acquisition campaigns and impact of environmental variables. Both features become more evident when increasing the frequency of operation. The variation in atmospheric variables, such as humidity, temperature and pressure has an influence over the performance of all the elements of the facility. The instrumentation behavior is influenced both by the warming up process, and the ambience conditions that surround the equipment. On the changes of the atmosphere itself, they affect the electromagnetic wave propagation, given the physical link between the conditions of the atmosphere and its electric properties as an electromagnetic waves propagation medium
Resumo:
Silica final lens performance in laser fusion facilities: HiPER and LIFE
Resumo:
Nowadays, the projects LIFE (Laser Inertial Fusion Energy) in USA and HiPER (High Power Laser Energy Research) in Europe are the most advanced ones to demonstrate laser fusion energy viability. One of the main points of concern to properly achieve ignition is the performance of the final optics (lenses) under the severe irradiation conditions that take place in fusion facilities. In this paper, we calculate the radiation fluxes and doses as well as the radiation-induced temperature enhancement and colour centre formation in final lenses assuming realistic geometrical configurations for HiPER and LIFE. On these bases, the mechanical stresses generated by the established temperature gradients are evaluated showing that from a mechanical point of view lenses only fulfil specifications if ions resulting from the imploding target are mitigated. The absorption coefficient of the lenses is calculated during reactor startup and steady-state operation. The obtained results reveal the necessity of new solutions to tackle ignition problems during the startup process for HiPER. Finally, we evaluate the effect of temperature gradients on focal length changes and lens surface deformations. In summary, we discuss the capabilities and weak points of silica lenses and propose alternatives to overcome predictable problems
Resumo:
The design, construction and operation of the tunnels of M-30, the major ring road in the city of Madrid (Spain), represent a very interesting project in wich a wide variety of situations -geometrical, topographical, etc.- had to be covered, in variable conditions of traffic. For that reasons, the M-30 project is a remarkable technical challenge, which, after its completion, turned into an international reference. From the "design for safety" perspective, a holistic approach has been used to deal with new technologies, integration of systems and development of the procedures to reach the maximum level. However, one of the primary goals has been to achieve reasonable homogeneity characteristics which can permit operate a netword of tunels as one only infraestructure. In the case of the ventilation system the mentioned goals have implied innovative solutions and coordination efforts of great interest. Consequently, this paper describes the principal ideas underlying the conceptual solution developed focusing on the principal peculiarities of the project.
Resumo:
Between 2003 and 2007 an urban network or road tunnels with a total constructed tubes length of 45 km was built in the city of Madrid. This amazing engineering work, known as "Calle 30 Project" counted with different kinds of tunnel typologies and ventilation systems. Due to the length of the tunnels and the impact of the work itself, the tunnels were endowed with a great variety of installations to provide the maximum levels of safety both for users and the infrastructure includieng, in some parts of the tunnel, fixed fire fighting system based on water mist. Whithin this framework a large-scale programme of fire tests was planned to study different aspects related to fire safety in the tunnels including the phenomena of the interaction between ventilation and extinguishing system. In addition, these large scale fire tests allowed fire brigades of the city of Madrid an opportunity to define operational procedures for specific fire fighting in tunnels and evaluate the possibilities of fixed fire fighting systems. The tests were carried out in the Center of Experimentation "San pedro of Anes" which includes a 600 m tunnel with a removable false ceiling for reproducing different ceiling heights and ventilation conditions (transverse and longitudinal ones). Interesting conclusions on the interaction of ventilation and water mist systems were obtained but also on other aspects including performance of water mist system in terms of reduction of gas temperatures or visibility conditions. This paper presents a description of the test's programme carried out and some previous results obtained.
Resumo:
The aims of this study were to analyse perceptions regarding the sporting events held in the Madrid Sports Palace and to analyse whether those perceptions vary by age or gender. One hundred and ninetyfive residents answered the Ntloko and Swart (2008) questionnaire. The dimensions most highly rated were economic benefits (3.9±0.8), the event as a regional showcase (3.6±0.7), and the event as entertainment (3.4±0.6). However, the respondents did not agree with the negative environmental impact (2.0±0.8). Men rated the use of public money (z=2.4; pmenor que.05) and the regional showcase (z=2.0 pmenor que.05) more positively than women. Finally, women rated the increase in prices (z=2.0; pmenor que.05) more highly than men. The age groups differed significantly only regarding the promotion of community pride. Seniors and middle-aged adults rated it more positively than young adults (?2(2)=9.9; pmenor que.01). The fact that in an urban sports facility regular sporting events take place on a regular basis means that there are diverse perceptions, though mainly positive, and those perceptions differ from the perceptions about mega events that take place once in a life time at temporary sports facilities.
Resumo:
The aim of this study was to determine the effect of animal management and farm facilities on total feed intake (TFI), feed conversion ratio (FCR) and mortality rate (MORT) of grower-finishing pigs. In total, 310 batches from 244 grower-finishing farms, consisting of 454 855 Pietrain sired pigs in six Spanish pig companies were used. Data collection consisted of a survey on management practices (season of placement, split-sex by pens, number of pig origins, water source in the farm, initial or final BW) and facilities (floor, feeder, ventilation or number of animals placed) during 2008 and 2009. Results indicated that batches of pigs placed between January and March had higher TFI (P=0.006), FCR (P=0.005) and MORT (P=0.03) than those placed between July and September. Moreover, batches of pigs placed between April and June had lower MORT (P=0.003) than those placed between January and March. Batches which had split-sex pens had lower TFI (P=0.001) and better FCR (P<0.001) than those with mixed-sex in pens; pigs fed with a single-space feeder with incorporated drinker also had the lowest TFI (P<0.001) and best FCR (P<0.001) in comparison to single and multi-space feeders without a drinker. Pigs placed in pens with <50% slatted floors presented an improvement in FCR (P<0.05) than pens with 50% or more slatted floors. Batches filled with pigs from multiple origins had higher MORT (P<0.001) than those from a single origin. Pigs housed in barns that performed manual ventilation control presented higher MORT (P<0.001) in comparison to automatic ventilation. The regression analysis also indicated that pigs which entered to grower-finisher facilities with higher initial BW had lower MORT (P<0.05) and finally pigs which were sent to slaughterhouse with a higher final BW presented higher TFI (P<0.001). The variables selected for each dependent variable explained 61.9%, 24.8% and 20.4% of the total variability for TFI, FCR and MORT, respectively. This study indicates that farms can increase growth performance and reduce mortality by improving farm facilities and/or modifying management practices.
Resumo:
El proyecto consiste en el diseño del sistema de climatización de un edificio ubicado en la ciudad de Madrid que utilice la energía solar como fuente de calor y electricidad. El objetivo es que el edificio tenga un consumo energético lo más bajo posible y que utilice energías de origen renovable para su explotación. Se incluye el cálculo de cargas térmicas, el dimensionamiento del sistema de climatización y de los sistemas de captación de energía solar (térmica y fotovoltaica). Adicionalmente, se definen las principales características de un sistema de control centralizado que permita optimizar el rendimiento y monitorizar el funcionamiento de la instalación de forma continua. Se incluye el diseño de las instalaciones auxiliares con un grado de detalle suficiente que permita su valoración, tanto desde el punto de vista energético como económico. Como parte fundamental del proyecto, se extraen conclusiones acerca del ahorro energético de las instalaciones y se analiza la viabilidad económica de las inversiones. ABSTRACT The project covers the design of a Heating and Climatization System for a building located in the city of Madrid (Spain). The facilities will use solar energy as the main source for both heat and electricity. The main goals are to achieve the lowest possible energy consumption and to use renewable sources of energy to cover it. Calculation of thermal charges is included, together with the sizing of both the Climatization System and the Solar Energy (Thermal and PV) facilities. In addition, the main characteristics of a Centralized Control System are defined. This will help both to optimize the performance of the different systems involved and to monitor the operation. Design of all auxiliary systems is included with enough level of detail as to be able to evaluate them from both energetic and economic points of view. Paramount in this project is to be able to draw conclusions about the energy savings and the profitability (or not) of the main investments to be carried out
Resumo:
The main objective of this research is to promote passive thermal design techniques in the construction of wineries. Natural ventilation in underground cellars is analyzed, focusing on the entrance tunnel, the ventilation chimney and the cave. A monitoring system was designed in order to detect changes in the indoor conditions and outdoor air infiltration. Monitoring process was carried out during one year. Results show the influence of outside temperature, ventilation chimney and access tunnel on the conditions inside the underground cellar. During hot periods, natural ventilation has a negligible influence on the indoor ambience, despite the permanently open vents in the door and chimney. The tunnel and ventilation chimney work as a temperature regulator, dampening outside fluctuations. Forced ventilation is necessary when a high air exchange ratio is needed. During cold periods, there is greater instability as a result of increased natural ventilation. The temperature differences along the tunnel are reduced, reflecting a homogenization and mixing of the air. The ventilation flow is sufficient to modify the temperature and relative humidity of the cave. Forced ventilation is not necessary in this period. During the intermediate periods --autumn and spring-- occurs different behaviors based on time of day.
Resumo:
The main objective of ventilation systems in case of fire is the reduction of the possible consequences by achieving the best possible conditions for the evacuation of the users and the intervention of the emergency services. The required immediate transition, from normal to emergency functioning of the ventilation equipments, is being strengthened by the use of automatic and semi-automatic control systems, what reduces the response times through the help to the operators, and the use of pre-defined strategies. A further step consists on the use of closed-loop algorithms, which takes into account not only the initial conditions but their development (air velocity, traffic situation, etc.), optimizing smoke control capacity.
Resumo:
From the moment we enter a large office building until we leave it, we receive a lot of attentions served by the management of services to the user. However, it is usually quite inappreciable the work that is being developed to keep things running smoothly.The services provided in a building are carried out by people. However, we often tend to forget these people when we talk about the tasks that make that a building operates properly 24 hours a day, 365 days a year.But, for example, what would happen if one day the service provided by the reception in a large building did not function as it should? What would it be like if one day the person performing the service of maintenance of the building's cleaning were not at his post? How would the working day develop if there were not a correct air handling system?People are the foundation of the proper functioning of a building. The work of the Facilities Manager and the Facility Management is the management of their functions: the responsible management of the team.
Resumo:
Sistema nervioso y ejercicio
Resumo:
The decision to select the most suitable type of energy storage system for an electric vehicle is always difficult, since many conditionings must be taken into account. Sometimes, this study can be made by means of complex mathematical models which represent the behavior of a battery, ultracapacitor or some other devices. However, these models are usually too dependent on parameters that are not easily available, which usually results in nonrealistic results. Besides, the more accurate the model, the more specific it needs to be, which becomes an issue when comparing systems of different nature. This paper proposes a practical methodology to compare different energy storage technologies. This is done by means of a linear approach of an equivalent circuit based on laboratory tests. Via these tests, the internal resistance and the self-discharge rate are evaluated, making it possible to compare different energy storage systems regardless their technology. Rather simple testing equipment is sufficient to give a comparative idea of the differences between each system, concerning issues such as efficiency, heating and self-discharge, when operating under a certain scenario. The proposed methodology is applied to four energy storage systems of different nature for the sake of illustration.
Resumo:
Crystallization and grain growth technique of thin film silicon are among the most promising methods for improving efficiency and lowering cost of solar cells. A major advantage of laser crystallization and annealing over conventional heating methods is its ability to limit rapid heating and cooling to thin surface layers. Laser energy is used to heat the amorphous silicon thin film, melting it and changing the microstructure to polycrystalline silicon (poly-Si) as it cools. Depending on the laser density, the vaporization temperature can be reached at the center of the irradiated area. In these cases ablation effects are expected and the annealing process becomes ineffective. The heating process in the a-Si thin film is governed by the general heat transfer equation. The two dimensional non-linear heat transfer equation with a moving heat source is solve numerically using the finite element method (FEM), particularly COMSOL Multiphysics. The numerical model help to establish the density and the process speed range needed to assure the melting and crystallization without damage or ablation of the silicon surface. The samples of a-Si obtained by physical vapour deposition were irradiated with a cw-green laser source (Millennia Prime from Newport-Spectra) that delivers up to 15 W of average power. The morphology of the irradiated area was characterized by confocal laser scanning microscopy (Leica DCM3D) and Scanning Electron Microscopy (SEM Hitachi 3000N). The structural properties were studied by micro-Raman spectroscopy (Renishaw, inVia Raman microscope).