60 resultados para Rye House Plot, 1683
Resumo:
We describe a new online database, named HispaVeg, which currently holds data from 2663 vegetation plots of Spanish woodlands, scrublands and grasslands. Unlike other similar databases, a detailed description of the structure is stored with the floristic data of each plot (i.e., number and physiognomy of the vertical layers, cover values for each layer).Most of the vegetation plots are large rectangles (400 to 2000 square meters) with an average of 34 species per plot. The survey dates range from 1956 to present, with most of the records between 1964 and 1994. The elevation of the plots ranges from 0 to 2880, with most of the plots between 300 and 1500 m. HispaVeg is freely available to the scientific community. Users can query the online database, view printable reports for each plot and download spreadsheet-like raw data for subsets of vegetation plots.
Resumo:
Transportation infrastructure is known to affect the value of real estate property by virtue of changes in accessibility. The impact of transportation facilities is highly localized as well, and it is possible that spillover effects result from the capitalization of accessibility. The objective of this study was to review the theoretical background related to spatial hedonic models and the opportunities that they provided to evaluate the effect of new transportation infrastructure. An empirical case study is presented: the Madrid Metro Line 12, known as Metrosur, in the region of Madrid, Spain. The effect of proximity to metro stations on housing prices was evaluated. The analysis took into account a host of variables, including structure, location, and neighborhood and made use of three modeling approaches: linear regression estimation with ordinary least squares, spatial error, and spatial lag. The results indicated that better accessibility to Metrosur stations had a positive impact on real estate values and that the effect was marked in cases in which a house was for sale. The results also showed the presence of submarkets, which were well defined by geographic boundaries, and transport fares, which implied that the economic benefits differed across municipalities.
Resumo:
In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the “Smart Grid” which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.
Resumo:
Advances in solid-state lighting have overcome common limitations on optical wireless such as power needs due to light dispersion. It's been recently proposed the modification of lamp's drivers to take advantages of its switching behaviour to include data links maintaining the illumination control they provide. In this paper, a remote access application using visible light communications is presented that provides wireless access to a remote computer using a touchscreen as user interface
Resumo:
Si existe una imagen verdaderamente elocuente para describir a Richard Buckminster Fuller (1895-1983) esta es, sin duda, la que el pintor Boris Artzybasheff (1899-1965) realizó para la portada con la que la revista Time abrió el 10 de enero de 1964. En ella se puede ver como la cabeza de este inventor, ingeniero, poeta y arquitecto se encuentra facetada en cientos de triángulos, formando algo que no es sino una cúpula geodésica, como aquellas que le habían hecho famoso en todo el mundo. Frente a esta identificación que se da en la imagen de Artzybasheff entre Fuller y sus cúpulas, transformando al arquitecto en su propia obra, lo que se pretende realizar en este trabajo de investigación es el camino inverso, penetrar en esa cabeza o, mejor dicho, en esa cúpula que la alberga, a través del estudio de una de las cúpulas más personales que construyera RBF: la que fue su casa en Carbondale, en la que vivió durante toda la década de los años sesenta del pasado siglo, precisamente los mismo años de aquella fantástica portada de Time. El análisis detallado de esta obra nos permitirá acercarnos al centro gravitacional del pensamiento de RBF: la búsqueda de una mayor libertad para el hombre gracias a una arquitectura más sostenible y, por ello, más económica. Una búsqueda que le llevó a crear no sólo una casa, sino todo un mundo propio.
Resumo:
The present text intends to analyze the hypothesis stating that the path of the sun can be an organizing element for how you live in the houses designed by Jørn Utzon. To do so, I have selected twenty houses and building complexes designed by him between the years 1950-94, in Denmark, Sweden, The United Kingdom and Spain. In these projects I will look for elements which are repeated and their possible meaning. The aim is to reach practical conclusions that could help us decide how to orientate a house.
Resumo:
Proyecto House of Would
Resumo:
Proyecto wooden house
Resumo:
En el contexto de inestabilidad y cambio vivido en la URSS durante la década de 1920, un grupo de arquitectos dirigido por Moisei Ginzburg abordó el tema del alojamiento de masas. Su misión no sería sólo dar solución al problema de la vivienda, sino redefinirla como el marco adecuado para una sociedad sometida a un cambio sin precedentes. La respuesta se desarrolló a través de un proceso de investigación que duró más de cinco años, en tres aproximaciones sucesivas que culminaron con el edificio Narkomfin. La primera, de carácter conceptual, se formalizó en el Concurso Amistoso de 1926. La segunda se articuló a través de la investigación del Stroikom bajo premisas científicas y metodológicas. Finalmente, las conclusiones tipológicas alcanzadas en esta segunda etapa se materializaron en la construcción de algunos ejemplos, entre los que destacó el edificio Narkomfin. Este último acercamiento, de carácter empírico, ha sido tradicionalmente examinado por los expertos como un hecho aislado. Sin embargo, su estudio debe trascender necesariamente el genio del autor-creador en favor del proceso de investigación al que pertenece. Sólo desde este punto de vista cobra sentido la consideración de Ginzburg sobre su propio edificio como un medio propositivo y no impositivo: un proyecto concebido como una herramienta de transición hacia una sociedad más avanzada.
Resumo:
El objetivo de la presente investigación es el desarrollo de un modelo de cálculo rápido, eficiente y preciso, para la estimación de los costes finales de construcción, en las fases preliminares del proyecto arquitectónico. Se trata de una herramienta a utilizar durante el proceso de elaboración de estudios previos, anteproyecto y proyecto básico, no siendo por tanto preciso para calcular el “predimensionado de costes” disponer de la total definición grafica y literal del proyecto. Se parte de la hipótesis de que en la aplicación práctica del modelo no se producirán desviaciones superiores al 10 % sobre el coste final de la obra proyectada. Para ello se formulan en el modelo de predimensionado cinco niveles de estimación de costes, de menor a mayor definición conceptual y gráfica del proyecto arquitectónico. Los cinco niveles de cálculo son: dos que toman como referencia los valores “exógenos” de venta de las viviendas (promoción inicial y promoción básica) y tres basados en cálculos de costes “endógenos” de la obra proyectada (estudios previos, anteproyecto y proyecto básico). El primer nivel de estimación de carácter “exógeno” (nivel .1), se calcula en base a la valoración de mercado de la promoción inmobiliaria y a su porcentaje de repercusión de suelo sobre el valor de venta de las viviendas. El quinto nivel de valoración, también de carácter “exógeno” (nivel .5), se calcula a partir del contraste entre el valor externo básico de mercado, los costes de construcción y los gastos de promoción estimados de la obra proyectada. Este contraste entre la “repercusión del coste de construcción” y el valor de mercado, supone una innovación respecto a los modelos de predimensionado de costes existentes, como proceso metodológico de verificación y validación extrínseca, de la precisión y validez de las estimaciones resultantes de la aplicación práctica del modelo, que se denomina Pcr.5n (Predimensionado costes de referencia con .5niveles de cálculo según fase de definición proyectual / ideación arquitectónica). Los otros tres niveles de predimensionado de costes de construcción “endógenos”, se estiman mediante cálculos analíticos internos por unidades de obra y cálculos sintéticos por sistemas constructivos y espacios funcionales, lo que se lleva a cabo en las etapas iniciales del proyecto correspondientes a estudios previos (nivel .2), anteproyecto (nivel .3) y proyecto básico (nivel .4). Estos cálculos teóricos internos son finalmente evaluados y validados mediante la aplicación práctica del modelo en obras de edificación residencial, de las que se conocen sus costes reales de liquidación final de obra. Según va evolucionando y se incrementa el nivel de definición y desarrollo del proyecto, desde los estudios previos hasta el proyecto básico, el cálculo se va perfeccionando en su nivel de eficiencia y precisión de la estimación, según la metodología aplicada: [aproximaciones sucesivas en intervalos finitos], siendo la hipótesis básica como anteriormente se ha avanzado, lograr una desviación máxima de una décima parte en el cálculo estimativo del predimensionado del coste real de obra. El cálculo del coste de ejecución material de la obra, se desarrolla en base a parámetros cúbicos funcionales “tridimensionales” del espacio proyectado y parámetros métricos constructivos “bidimensionales” de la envolvente exterior de cubierta/fachada y de la huella del edificio sobre el terreno. Los costes funcionales y constructivos se ponderan en cada fase del proceso de cálculo con sus parámetros “temáticos/específicos” de gestión (Pg), proyecto (Pp) y ejecución (Pe) de la concreta obra presupuestada, para finalmente estimar el coste de construcción por contrata, como resultado de incrementar al coste de ejecución material el porcentaje correspondiente al parámetro temático/especifico de la obra proyectada. El modelo de predimensionado de costes de construcción Pcr.5n, será una herramienta de gran interés y utilidad en el ámbito profesional, para la estimación del coste correspondiente al Proyecto Básico previsto en el marco técnico y legal de aplicación. Según el Anejo I del Código Técnico de la Edificación (CTE), es de obligado cumplimiento que el proyecto básico contenga una “Valoración aproximada de la ejecución material de la obra proyectada por capítulos”, es decir , que el Proyecto Básico ha de contener al menos un “presupuesto aproximado”, por capítulos, oficios ó tecnologías. El referido cálculo aproximado del presupuesto en el Proyecto Básico, necesariamente se ha de realizar mediante la técnica del predimensionado de costes, dado que en esta fase del proyecto arquitectónico aún no se dispone de cálculos de estructura, planos de acondicionamiento e instalaciones, ni de la resolución constructiva de la envolvente, por cuanto no se han desarrollado las especificaciones propias del posterior proyecto de ejecución. Esta estimación aproximada del coste de la obra, es sencilla de calcular mediante la aplicación práctica del modelo desarrollado, y ello tanto para estudiantes como para profesionales del sector de la construcción. Como se contiene y justifica en el presente trabajo, la aplicación práctica del modelo para el cálculo de costes en las fases preliminares del proyecto, es rápida y certera, siendo de sencilla aplicación tanto en vivienda unifamiliar (aisladas y pareadas), como en viviendas colectivas (bloques y manzanas). También, el modelo es de aplicación en el ámbito de la valoración inmobiliaria, tasaciones, análisis de viabilidad económica de promociones inmobiliarias, estimación de costes de obras terminadas y en general, cuando no se dispone del proyecto de ejecución y sea preciso calcular los costes de construcción de las obras proyectadas. Además, el modelo puede ser de aplicación para el chequeo de presupuestos calculados por el método analítico tradicional (estado de mediciones pormenorizadas por sus precios unitarios y costes descompuestos), tanto en obras de iniciativa privada como en obras promovidas por las Administraciones Públicas. Por último, como líneas abiertas a futuras investigaciones, el modelo de “predimensionado costes de referencia 5 niveles de cálculo”, se podría adaptar y aplicar para otros usos y tipologías diferentes a la residencial, como edificios de equipamientos y dotaciones públicas, valoración de edificios históricos, obras de urbanización interior y exterior de parcela, proyectos de parques y jardines, etc….. Estas lineas de investigación suponen trabajos paralelos al aquí desarrollado, y que a modo de avance parcial se recogen en las comunicaciones presentadas en los Congresos internacionales Scieconf/Junio 2013, Rics‐Cobra/Septiembre 2013 y en el IV Congreso nacional de patología en la edificación‐Ucam/Abril 2014. ABSTRACT The aim of this research is to develop a fast, efficient and accurate calculation model to estimate the final costs of construction, during the preliminary stages of the architectural project. It is a tool to be used during the preliminary study process, drafting and basic project. It is not therefore necessary to have the exact, graphic definition of the project in order to be able to calculate the cost‐scaling. It is assumed that no deviation 10% higher than the final cost of the projected work will occur during the implementation. To that purpose five levels of cost estimation are formulated in the scaling model, from a lower to a higher conceptual and graphic definition of the architectural project. The five calculation levels are: two that take as point of reference the ”exogenous” values of house sales (initial development and basic development), and three based on calculation of endogenous costs (preliminary study, drafting and basic project). The first ”exogenous” estimation level (level.1) is calculated over the market valuation of real estate development and the proportion the cost of land has over the value of the houses. The fifth level of valuation, also an ”exogenous” one (level.5) is calculated from the contrast between the basic external market value, the construction costs, and the estimated development costs of the projected work. This contrast between the ”repercussions of construction costs” and the market value is an innovation regarding the existing cost‐scaling models, as a methodological process of extrinsic verification and validation, of the accuracy and validity of the estimations obtained from the implementation of the model, which is called Pcr.5n (reference cost‐scaling with .5calculation levels according to the stage of project definition/ architectural conceptualization) The other three levels of “endogenous” construction cost‐scaling are estimated from internal analytical calculations by project units and synthetic calculations by construction systems and functional spaces. This is performed during the initial stages of the project corresponding to preliminary study process (level.2), drafting (level.3) and basic project (level.4). These theoretical internal calculations are finally evaluated and validated via implementation of the model in residential buildings, whose real costs on final payment of the works are known. As the level of definition and development of the project evolves, from preliminary study to basic project, the calculation improves in its level of efficiency and estimation accuracy, following the applied methodology: [successive approximations at finite intervals]. The basic hypothesis as above has been made, achieving a maximum deviation of one tenth, in the estimated calculation of the true cost of predimensioning work. The cost calculation for material execution of the works is developed from functional “three‐dimensional” cubic parameters for the planned space and constructive “two dimensional” metric parameters for the surface that envelopes around the facade and the building’s footprint on the plot. The functional and building costs are analyzed at every stage of the process of calculation with “thematic/specific” parameters of management (Pg), project (Pp) and execution (Pe) of the estimated work in question, and finally the cost of contractual construction is estimated, as a consequence of increasing the cost of material execution with the percentage pertaining to the thematic/specific parameter of the projected work. The construction cost‐scaling Pcr.5n model will be a useful tool of great interest in the professional field to estimate the cost of the Basic Project as prescribed in the technical and legal framework of application. According to the appendix of the Technical Building Code (CTE), it is compulsory that the basic project contains an “approximate valuation of the material execution of the work, projected by chapters”, that is, that the basic project must contain at least an “approximate estimate” by chapter, trade or technology. This approximate estimate in the Basic Project is to be performed through the cost‐scaling technique, given that structural calculations, reconditioning plans and definitive contruction details of the envelope are still not available at this stage of the architectural project, insofar as specifications pertaining to the later project have not yet been developed. This approximate estimate of the cost of the works is easy to calculate through the implementation of the given model, both for students and professionals of the building sector. As explained and justified in this work, the implementation of the model for cost‐scaling during the preliminary stage is fast and accurate, as well as easy to apply both in single‐family houses (detached and semi‐detached) and collective housing (blocks). The model can also be applied in the field of the real‐estate valuation, official appraisal, analysis of the economic viability of real estate developments, estimate of the cost of finished projects and, generally, when an implementation project is not available and it is necessary to calculate the building costs of the projected works. The model can also be applied to check estimates calculated by the traditional analytical method (state of measurements broken down into price per unit cost details), both in private works and those promoted by Public Authorities. Finally, as potential lines for future research, the “five levels of calculation cost‐scaling model”, could be adapted and applied to purposes and typologies other than the residential one, such as service buildings and public facilities, valuation of historical buildings, interior and exterior development works, park and garden planning, etc… These lines of investigation are parallel to this one and, by way of a preview, can be found in the dissertations given in the International Congresses Scieconf/June 2013, Rics‐Cobra/September 2013 and in the IV Congress on building pathology ‐Ucam/April 2014.