51 resultados para Real Palacio das Necessidades (Lisbon, Portugal)
Resumo:
Análisis del proceso de formación de precios en el mercado residencial de Lisboa desde el punto de vista de la eliminación de los aspectos subjetivos de la apreciación por el tasador de las características de los inmuebles
Resumo:
Due to ever increasing transportation of people and goods, automatic traffic surveillance is becoming a key issue for both providing safety to road users and improving traffic control in an efficient way. In this paper, we propose a new system that, exploiting the capabilities that both computer vision and machine learning offer, is able to detect and track different types of real incidents on a highway. Specifically, it is able to accurately detect not only stopped vehicles, but also drivers and passengers leaving the stopped vehicle, and other pedestrians present in the roadway. Additionally, a theoretical approach for detecting vehicles which may leave the road in an unexpected way is also presented. The system works in real-time and it has been optimized for working outdoor, being thus appropriate for its deployment in a real-world environment like a highway. First experimental results on a dataset created with videos provided by two Spanish highway operators demonstrate the effectiveness of the proposed system and its robustness against noise and low-quality videos.
Resumo:
Lately, videoconference applications have experienced an evolution towards the World Wide Web. New technologies have given browsers real-time communications capabilities. In this context, WebRTC aims to provide this functionality by following and defining standards. Being a new effort, WebRTC still lacks advanced videoconferencing services such as session recording, media mixing and adjusting to varying network conditions. This paper analyzes these challenges and proposes an architecture based on a traditional communications entity, the Multipoint Control Unit or MCU as a solution.
Resumo:
P2P applications are increasingly present on the web. We have identified a gap in current proposals when it comes to the use of traditional P2P overlays for real-time multimedia streaming. We analyze the possibilities and challenges to extend WebRTC in order to implement JavaScript APIs for P2P streaming algorithms.
Resumo:
Business information has become a critical asset for companies and it has even more value when obtained and exploited in real time. This paper analyses how to integrate this information into an existing banking Enterprise Architecture, following an event-driven approach, and entails the study of three main issues: the definition of business events, the specification of a reference architecture, which identifies the specific integration points, and the description of a governance approach to manage the new elements. All the proposed solutions have been validated with a proof-of-concept test bed in an open source environment. It is based on a case study of the banking sector that allows an operational validation to be carried out, as well as ensuring compliance with non-functional requirements. We have focused these requirements on performance.
Complete and efficient methods for supporting side effects in independent/restricted and-parallelism
Resumo:
It has been shown that it is possible to exploit Independent/Restricted And-parallelism in logic programs while retaining the conventional "don't know" semantics of such programs. In particular, it is possible to parallelize pure Prolog programs while maintaining the semantics of the language. However, when builtin side-effects (such as write or assert) appear in the program, if an identical observable behaviour to that of sequential Prolog implementations is to be preserved, such side-effects have to be properly sequenced. Previously proposed solutions to this problem are either incomplete (lacking, for example, backtracking semantics) or they force sequentialization of significant portions of the execution graph which could otherwise run in parallel. In this paper a series of side-effect synchronization methods are proposed which incur lower overhead and allow more parallelism than those previously proposed. Most importantly, and unlike previous proposals, they have well-defined backward execution behaviour and require only a small modification to a given (And-parallel) Prolog implementation.
Resumo:
Proof-Carrying Code (PCC) is a general approach to mobile code safety in which the code supplier augments the program with a certifícate (or proof). The intended benefit is that the program consumer can locally validate the certifícate w.r.t. the "untrusted" program by means of a certifícate checker—a process which should be much simpler, eíñcient, and automatic than generating the original proof. Abstraction Carrying Code (ACC) is an enabling technology for PCC in which an abstract model of the program plays the role of certifícate. The generation of the certifícate, Le., the abstraction, is automatically carried out by an abstract interpretation-based analysis engine, which is parametric w.r.t. different abstract domains. While the analyzer on the producer side typically has to compute a semantic fixpoint in a complex, iterative process, on the receiver it is only necessary to check that the certifícate is indeed a fixpoint of the abstract semantics equations representing the program. This is done in a single pass in a much more efficient process. ACC addresses the fundamental issues in PCC and opens the door to the applicability of the large body of frameworks and domains based on abstract interpretation as enabling technology for PCC. We present an overview of ACC and we describe in a tutorial fashion an application to the problem of resource-aware security in mobile code. Essentially the information computed by a cost analyzer is used to genérate cost certificates which attest a safe and efficient use of a mobile code. A receiving side can then reject code which brings cost certificates (which it cannot validate or) which have too large cost requirements in terms of computing resources (in time and/or space) and accept mobile code which meets the established requirements.
Resumo:
A number of short-to-mid height RC buildings with wide beams have been constructed in moderate-seismicity areas of Spain. The seismic behavior in the direction of the wide beams appears to be deficient because of low lateral strength, low ductility of the wide beams, big strut compressive forces inside the column-beam connections, and unreliable contribution of the spandrel zones of the wide beams. In the orthogonal direction, the behavior is worse since only the joists and the façade beams contribute to the lateral resistance. The objective is to assess the seismic capability of these structures; further research will involve proposing retrofit strategies. The research approach consists of selecting a number of representative buildings and evaluating their vulnerability by code-type, push-over and dynamic analyses. The cooperation of the masonry infill walls is accounted for. The main conclusion is that the seismic behavior of these buildings is inadequate in most of the situations.
Resumo:
A large number of reinforced concrete (RC) frame structures built in earthquake-prone areas such as Haiti are vulnerable to strong ground motions. Structures in developing countries need low-cost seismic retrofit solutions to reduce their vulnerability. This paper investigates the feasibility of using masonry infill walls to reduce deformations and damage caused by strong ground motions in brittle and weak RC frames designed only for gravity loads. A numerical experiment was conducted in which several idealized prototypes representing RC frame structures of school buildings damaged during the Port-au-Prince earthquake (Haiti, 2010) were strengthened by adding elements representing masonry infill walls arranged in different configurations. Each configuration was characterized by the ratio Rm of the area of walls in the direction of the ground motion (in plan) installed in each story to the total floor area. The numerical representations of these idealized RC frame structures with different values of Rm were (hypothetically) subjected to three major earthquakes with peak ground accelerations of approximately 0.5g. The results of the non-linear dynamic response analyses were summarized in tentative relationships between Rm and four parameters commonly used to characterize the seismic response of structures: interstory drift, Park and Ang indexes of damage, and total amount of energy dissipated by the main frame. It was found that Rm=4% is a reasonable minimum design value for seismic retrofitting purposes in cases in which available resources are not sufficient to afford conventional retrofit measures.
Resumo:
This paper describes a numerical study on the instability of a brace-type seismic damper based on the out of plane yielding of the web of wide-flange steel sections (Web Plastifying Damper, WPD)The damper is intended to be installed in a framed structure as a standard diagonal brace. Under lateral forces, the damper is subjected to high axial forces, therefore its buckling instability is a matter of concern. Several finite element models representing WPDs with different axial stiffness and various geometries of their components were developed and analyzed taking into account both material and geometrical nonlinearities. The influence of several parameters defining the WPD in the load-displacement curve was examined. Furthermore, a simplified model to predict the buckling load is proposed.
Resumo:
This paper presents the results of cyclic loading tests on two large-scale reinforced concrete structural walls that were conducted at Purdue University. One of the walls had confinement reinforcement meeting ACI-318-11 requirements while the other wall did not have any confinement reinforcement. The walls were tested as part of a larger study aimed at indentifying parameters affecting failure modes observed to limit the drift capacity of structural walls in Chile during the Maule Earthquake of 2010. These failure modes include out-of-plane buckling (of the wall rather tan individual reinforcing bars), compression failure, and bond failure. This paper discusses the effects of confinement on failure mode. Distributions of unit strain and curvature obtained with a dense array of non-contact coordinate-tracking targets are also presented.
Resumo:
This work proposes design energy spectra in terms of velocity, derived through linear dynamic analyses on Turkish registers and intended for regions with design peak acceleration 0.3 g or higher. In the long and mid period ranges the analyses are linear, taking profit of the rather insensitivity of the spectra to the structural parameters other than the fundamental period; in the short period range, the spectra are more sensitive to the structural parameters and nonlinear analyses would be required. The selected records are classified in eight groups according to the design input acceleration, the soil type, the earthquake magnitude and the near-source effects. For each of these groups, median and characteristic spectra are proposed (50% and 95% percentiles). These spectra have an initial linear growing branch in the short period range, a horizontal branch in the mid period range and a descending branch in the long period range.
Resumo:
This research investigates the ultimate earthquake resistance of typical RC moment resisting frames designed accordingly to current standards, in terms of ultimate energy absorption/dissipation capacity. Shake table test of a 2/5 scale model, under several intensities of ground motion, are carried out. The loading effect of the earthquake is expressed as the total energy that the quake inputs to the structure, and the seismic resistance is interpreted as the amount of energy that the structure dissipates in terms of cumulative inelastic strain energy.
Resumo:
This paper provides partial results of an on-going research aimed at investigating the seismic response of reinforced concrete (RC) frames equipped with hysteretic-type energy dissipating devices (EDD). From a prototype RC frame structure designed only for gravity loads, a test model scaled in geometry to 2/5 was defined and built in the Laboratory of Structures of the University of Granada. Four EDDs were installed in the test model to provide the same seismic resistance than a conventional RC bare frame designed for sustain gravity and seismic loads following current codes. The test model with EDDs was subjected to several seismic simulations with the shaking table of Laboratory of structures of the University of Granada. The test results provide empirical evidences on the efficiency of the EDDs to prevent damage on the main frame and concentrating the inelastic deformations on the EDDs.
Resumo:
The city of Lorca (Spain) was hit on May 11th 2011 by two consecutive earthquakes with 4.6 and 5.2 Mw respectively, causing casualties and important damage in buildings. Lorca is located in the south-east region of Spain and settled on the trace of the Murcia-Totana-Lorca fault. Although the magnitudes of these ground motions were not severe, the damage observed was considerable over a great amount of buildings. More than 300 of them have been demolished and many others are being retrofitted. This paper reports a field study on the damage caused by these earthquakes. The observed damage is related with the structural typology. Further, prototypes of the damaged buildings are idealized with nonlinear numerical models and their seismic behavior and proneness to damage concentration is further investigated through dynamic response analyses.