50 resultados para Pseudo-Differential Boundary Problems


Relevância:

50.00% 50.00%

Publicador:

Resumo:

En este trabajo se han analizado varios problemas en el contexto de la elasticidad no lineal basándose en modelos constitutivos representativos. En particular, se han analizado problemas relacionados con el fenómeno de perdida de estabilidad asociada con condiciones de contorno en el caso de material reforzados con fibras. Cada problema se ha formulado y se ha analizado por separado en diferentes capítulos. En primer lugar se ha mostrado el análisis del gradiente de deformación discontinuo para un material transversalmente isótropo, en particular, el modelo del material considerado consiste de una base neo-Hookeana isótropa incrustada con fibras de refuerzo direccional caracterizadas con un solo parámetro. La solución de este problema se vincula con instabilidades que dan lugar al mecanismo de fallo conocido como banda de cortante. La perdida de elipticidad de las ecuaciones diferenciales de equilibrio es una condición necesaria para que aparezca este tipo de soluciones y por tanto las inestabilidades asociadas. En segundo lugar se ha analizado una deformación combinada de extensión, inación y torsión de un tubo cilíndrico grueso donde se ha encontrado que la deformación citada anteriormente puede ser controlada solo para determinadas direcciones de las fibras refuerzo. Para entender el comportamiento elástico del tubo considerado se ha ilustrado numéricamente los resultados obtenidos para las direcciones admisibles de las fibras de refuerzo bajo la deformación considerada. En tercer lugar se ha estudiado el caso de un tubo cilíndrico grueso reforzado con dos familias de fibras sometido a cortante en la dirección azimutal para un modelo de refuerzo especial. En este problema se ha encontrado que las inestabilidades que aparecen en el material considerado están asociadas con lo que se llama soluciones múltiples de la ecuación diferencial de equilibrio. Se ha encontrado que el fenómeno de instabilidad ocurre en un estado de deformación previo al estado de deformación donde se pierde la elipticidad de la ecuación diferencial de equilibrio. También se ha demostrado que la condición de perdida de elipticidad y ^W=2 = 0 (la segunda derivada de la función de energía con respecto a la deformación) son dos condiciones necesarias para la existencia de soluciones múltiples. Finalmente, se ha analizado detalladamente en el contexto de elipticidad un problema de un tubo cilíndrico grueso sometido a una deformación combinada en las direcciones helicoidal, axial y radial para distintas geotermias de las fibras de refuerzo . In the present work four main problems have been addressed within the framework of non-linear elasticity based on representative constitutive models. Namely, problems related to the loss of stability phenomena associated with boundary value problems for fibre-reinforced materials. Each of the considered problems is formulated and analysed separately in different chapters. We first start with the analysis of discontinuous deformation gradients for a transversely isotropic material under plane deformation. In particular, the material model is an augmented neo-Hookean base with a simple unidirectional reinforcement characterised by a single parameter. The solution of this problem is related to material instabilities and it is associated with a shear band-type failure mode. The loss of ellipticity of the governing differential equations is a necessary condition for the existence of these material instabilities. The second problem involves a detailed analysis of the combined non-linear extension, inflation and torsion of a thick-walled circular cylindrical tube where it has been found that the aforementioned deformation is controllable only for certain preferred directions of transverse isotropy. Numerical results have been illustrated to understand the elastic behaviour of the tube for the admissible preferred directions under the considered deformation. The third problem deals with the analysis of a doubly fibre-reinforced thickwalled circular cylindrical tube undergoing pure azimuthal shear for a special class of the reinforcing model where multiple non-smooth solutions emerge. The associated instability phenomena are found to occur prior to the point where the nominal stress tensor changes monotonicity in a particular direction. It has been also shown that the loss of ellipticity condition that arises from the equilibrium equation and ^W=2 = 0 (the second derivative of the strain-energy function with respect to the deformation) are equivalent necessary conditions for the emergence of multiple solutions for the considered material. Finally, a detailed analysis in the basis of the loss of ellipticity of the governing differential equations for a combined helical, axial and radial elastic deformations of a fibre-reinforced circular cylindrical tube is carried out.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present work is to provide an in-depth analysis of the most representative mirroring techniques used in SPH to enforce boundary conditions (BC) along solid profiles. We specifically refer to dummy particles, ghost particles, and Takeda et al. [Prog. Theor. Phys. 92 (1994), 939] boundary integrals. The analysis has been carried out by studying the convergence of the first- and second-order differential operators as the smoothing length (that is, the characteristic length on which relies the SPH interpolation) decreases. These differential operators are of fundamental importance for the computation of the viscous drag and the viscous/diffusive terms in the momentum and energy equations. It has been proved that close to the boundaries some of the mirroring techniques leads to intrinsic inaccuracies in the convergence of the differential operators. A consistent formulation has been derived starting from Takeda et al. boundary integrals (see the above reference). This original formulation allows implementing no-slip boundary conditions consistently in many practical applications as viscous flows and diffusion problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Boundary Element Method (BEM) is a discretisation technique for solving partial differential equations, which offers, for certain problems, important advantages over domain techniques. Despite the high CPU time reduction that can be achieved, some 3D problems remain today untreatable because the extremely large number of degrees of freedom—dof—involved in the boundary description. Model reduction seems to be an appealing choice for both, accurate and efficient numerical simulations. However, in the BEM the reduction in the number of degrees of freedom does not imply a significant reduction in the CPU time, because in this technique the more important part of the computing time is spent in the construction of the discrete system of equations. In this way, a reduction also in the number of weighting functions, seems to be a key point to render efficient boundary element simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the epoch-making "memoir" of Saint-Venant in 1855 the torsion of prismatic and cilindrical bars has reduced to a mathematical problem: the calculation of an analytical function satisfying prescribed boundary values. For over one century, till the first applications of the F.E.M. to the problem, the only possibility of study in irregularly shaped domains was the beatiful, but limitated, theory of complex function analysis, several functional approaches and the finite difference method. Nevertheless in 1963 Jaswon published an interestingpaper which was nearly lost between the splendid F. E.M. boom. The method was extended by Rizzo to more complicated problems and definitively incorporated to the scientific community background through several lecture-notes of Cruse recently published, but widely circulated during past years. The work of several researches has shown the tremendous possibilities of the method which is today a recognized alternative to the well established F .E. procedure. In fact, the first comprehensive attempt to cover the method, has been recently published in textbook form. This paper is a contribution to the implementation of a difficulty which arises if the isoparametric elements concept is applicated to plane potential problems with sharp corners in the boundary domain. In previous works, these problems was avoided using two principal approximations: equating the fluxes round the corner or establishing a binode element (in fact, truncating the corner). The first approximation distortes heavily the solution in thecorner neighbourhood, and a great amount of element is neccesary to reduce its influence. The second is better suited but the price payed is increasing the size of the system of equations to be solved. In this paper an alternative formulation, consistent with the shape function chosen in the isoparametric representation, is presented. For ease of comprehension the formulation has been limited to the linear element. Nevertheless its extension to more refined elements is straight forward. Also a direct procedure for the assembling of the equations is presented in an attempt to reduce the in-core computer requirements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

After the extensive research on the capabilities of the Boundary Integral Equation Method produced during the past years the versatility of its applications has been well founded. Maybe the years to come will see the in-depth analysis of several conflictive points, for example, adaptive integration, solution of the system of equations, etc. This line is clear in academic research. In this paper we comment on the incidence of the manner of imposing the boundary conditions in 3-D coupled problems. Here the effects are particularly magnified: in the first place by the simple model used (constant elements) and secondly by the process of solution, i.e. first a potential problem is solved and then the results are used as data for an elasticity problem. The errors add to both processes and small disturbances, unimportant in separated problems, can produce serious errors in the final results. The specific problem we have chosen is especially interesting. Although more general cases (i.e. transient)can be treated, here the domain integrals can be converted into boundary ones and the influence of the manner in which boundary conditions are applied will reflect the whole importance of the problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the boundary element method (BEM) p-convergence approach applied to three-dimensional problems governed by Laplace's equation. The advantages derived from the boundary discretization and hierarchical interpolation functions are collated in order to minimize human effort in preparation of input data and improve numerical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method is presented to generate reduced order models (ROMs) in Fluid Dynamics problems of industrial interest. The method is based on the expansion of the flow variables in a Proper Orthogonal Decomposition (POD) basis, calculated from a limited number of snapshots, which are obtained via Computational Fluid Dynamics (CFD). Then, the POD-mode amplitudes are calculated as minimizers of a properly defined overall residual of the equations and boundary conditions. The method includes various ingredients that are new in this field. The residual can be calculated using only a limited number of points in the flow field, which can be scattered either all over the whole computational domain or over a smaller projection window. The resulting ROM is both computationally efficient(reconstructed flow fields require, in cases that do not present shock waves, less than 1 % of the time needed to compute a full CFD solution) and flexible(the projection window can avoid regions of large localized CFD errors).Also, for problems related with aerodynamics, POD modes are obtained from a set of snapshots calculated by a CFD method based on the compressible Navier Stokes equations and a turbulence model (which further more includes some unphysical stabilizing terms that are included for purely numerical reasons), but projection onto the POD manifold is made using the inviscid Euler equations, which makes the method independent of the CFD scheme. In addition, shock waves are treated specifically in the POD description, to avoid the need of using a too large number of snapshots. Various definitions of the residual are also discussed, along with the number and distribution of snapshots, the number of retained modes, and the effect of CFD errors. The method is checked and discussed on several test problems that describe (i) heat transfer in the recirculation region downstream of a backwards facing step, (ii) the flow past a two-dimensional airfoil in both the subsonic and transonic regimes, and (iii) the flow past a three-dimensional horizontal tail plane. The method is both efficient and numerically robust in the sense that the computational effort is quite small compared to CFD and results are both reasonably accurate and largely insensitive to the definition of the residual, to CFD errors, and to the CFD method itself, which may contain artificial stabilizing terms. Thus, the method is amenable for practical engineering applications. Resumen Se presenta un nuevo método para generar modelos de orden reducido (ROMs) aplicado a problemas fluidodinámicos de interés industrial. El nuevo método se basa en la expansión de las variables fluidas en una base POD, calculada a partir de un cierto número de snapshots, los cuales se han obtenido gracias a simulaciones numéricas (CFD). A continuación, las amplitudes de los modos POD se calculan minimizando un residual global adecuadamente definido que combina las ecuaciones y las condiciones de contorno. El método incluye varios ingredientes que son nuevos en este campo de estudio. El residual puede calcularse utilizando únicamente un número limitado de puntos del campo fluido. Estos puntos puede encontrarse dispersos a lo largo del dominio computacional completo o sobre una ventana de proyección. El modelo ROM obtenido es tanto computacionalmente eficiente (en aquellos casos que no presentan ondas de choque reconstruir los campos fluidos requiere menos del 1% del tiempo necesario para calcular una solución CFD) como flexible (la ventana de proyección puede escogerse de forma que evite contener regiones con errores en la solución CFD localizados y grandes). Además, en problemas aerodinámicos, los modos POD se obtienen de un conjunto de snapshots calculados utilizando un código CFD basado en la versión compresible de las ecuaciones de Navier Stokes y un modelo de turbulencia (el cual puede incluir algunos términos estabilizadores sin sentido físico que se añaden por razones puramente numéricas), aunque la proyección en la variedad POD se hace utilizando las ecuaciones de Euler, lo que hace al método independiente del esquema utilizado en el código CFD. Además, las ondas de choque se tratan específicamente en la descripción POD para evitar la necesidad de utilizar un número demasiado grande de snapshots. Varias definiciones del residual se discuten, así como el número y distribución de los snapshots,el número de modos retenidos y el efecto de los errores debidos al CFD. El método se comprueba y discute para varios problemas de evaluación que describen (i) la transferencia de calor en la región de recirculación aguas abajo de un escalón, (ii) el flujo alrededor de un perfil bidimensional en regímenes subsónico y transónico y (iii) el flujo alrededor de un estabilizador horizontal tridimensional. El método es tanto eficiente como numéricamente robusto en el sentido de que el esfuerzo computacional es muy pequeño comparado con el requerido por el CFD y los resultados son razonablemente precisos y muy insensibles a la definición del residual, los errores debidos al CFD y al método CFD en sí mismo, el cual puede contener términos estabilizadores artificiales. Por lo tanto, el método puede utilizarse en aplicaciones prácticas de ingeniería.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper was to accurately estimate the local truncation error of partial differential equations, that are numerically solved using a finite difference or finite volume approach on structured and unstructured meshes. In this work, we approximated the local truncation error using the @t-estimation procedure, which aims to compare the residuals on a sequence of grids with different spacing. First, we focused the analysis on one-dimensional scalar linear and non-linear test cases to examine the accuracy of the estimation of the truncation error for both finite difference and finite volume approaches on different grid topologies. Then, we extended the analysis to two-dimensional problems: first on linear and non-linear scalar equations and finally on the Euler equations. We demonstrated that this approach yields a highly accurate estimation of the truncation error if some conditions are fulfilled. These conditions are related to the accuracy of the restriction operators, the choice of the boundary conditions, the distortion of the grids and the magnitude of the iteration error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The implementation of boundary conditions is one of the points where the SPH methodology still has some work to do. The aim of the present work is to provide an in-depth analysis of the most representative mirroring techniques used in SPH to enforce boundary conditions (BC) along solid profiles. We specifically refer to dummy particles, ghost particles, and Takeda et al. [1] boundary integrals. A Pouseuille flow has been used as a example to gradually evaluate the accuracy of the different implementations. Our goal is to test the behavior of the second-order differential operator with the proposed boundary extensions when the smoothing length h and other dicretization parameters as dx/h tend simultaneously to zero. First, using a smoothed continuous approximation of the unidirectional Pouseuille problem, the evolution of the velocity profile has been studied focusing on the values of the velocity and the viscous shear at the boundaries, where the exact solution should be approximated as h decreases. Second, to evaluate the impact of the discretization of the problem, an Eulerian SPH discrete version of the former problem has been implemented and similar results have been monitored. Finally, for the sake of completeness, a 2D Lagrangian SPH implementation of the problem has been also studied to compare the consequences of the particle movement

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Typical streak computations present in the literature correspond to linear streaks or to small amplitude nonlinear streaks computed using DNS or nonlinear PSE. We use the Reduced Navier-Stokes (RNS) equations to compute the streamwise evolution of fully non-linear streaks with high amplitude in a laminar flat plate boundary layer. The RNS formulation provides Reynolds number independent solutions that are asymptotically exact in the limit $Re \gg 1$, it requires much less computational effort than DNS, and it does not have the consistency and convergence problems of the PSE. We present various streak computations to show that the flow configuration changes substantially when the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, that end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the classical operators of mathematical physics the Laplacian plays an important role due to the number of different situations that can be modelled by it. Because of this a great effort has been made by mathematicians as well as by engineers to master its properties till the point that nearly everything has been said about them from a qualitative viewpoint. Quantitative results have also been obtained through the use of the new numerical techniques sustained by the computer. Finite element methods and boundary techniques have been successfully applied to engineering problems as can be seen in the technical literature (for instance [ l ] , [2], [3] . Boundary techniques are especially advantageous in those cases in which the main interest is concentrated on what is happening at the boundary. This situation is very usual in potential problems due to the properties of harmonic functions. In this paper we intend to show how a boundary condition different from the classical, but physically sound, is introduced without any violence in the discretization frame of the Boundary Integral Equation Method. The idea will be developed in the context of heat conduction in axisymmetric problems but it is hoped that its extension to other situations is straightforward. After the presentation of the method several examples will show the capabilities of modelling a physical problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta tesis se integran numéricamente las ecuaciones reducidas de Navier Stokes (RNS), que describen el flujo en una capa límite tridimensional que presenta también una escala característica espacial corta en el sentido transversal. La formulación RNS se usa para el cálculo de “streaks” no lineales de amplitud finita, y los resultados conseguidos coinciden con los existentes en la literatura, obtenidos típicamente utilizando simulación numérica directa (DNS) o nonlinear parabolized stability equations (PSE). El cálculo de los “streaks” integrando las RNS es mucho menos costoso que usando DNS, y no presenta los problemas de estabilidad que aparecen en la formulación PSE cuando la amplitud del “streak” deja de ser pequeña. El código de integración RNS se utiliza también para el cálculo de los “streaks” que aparecen de manera natural en el borde de ataque de una placa plana en ausencia de perturbaciones en la corriente uniforme exterior. Los resultados existentes hasta ahora calculaban estos “streaks” únicamente en el límite lineal (amplitud pequeña), y en esta tesis se lleva a cabo el cálculo de los mismos en el régimen completamente no lineal (amplitud finita). En la segunda parte de la tesis se generaliza el código RNS para incluir la posibilidad de tener una placa no plana, con curvatura en el sentido transversal que varía lentamente en el sentido de la corriente. Esto se consigue aplicando un cambio de coordenadas, que transforma el dominio físico en uno rectangular. La formulación RNS se integra también expresada en las correspondientes coordenadas curvilíneas. Este código generalizado RNS se utiliza finalmente para estudiar el flujo de capa límite sobre una placa con surcos que varían lentamente en el sentido de la corriente, y es usado para simular el flujo sobre surcos que crecen en tal sentido. Abstract In this thesis, the reduced Navier Stokes (RNS) equations are numerically integrated. This formulation describes the flow in a three-dimensional boundary layer that also presents a short characteristic space scale in the spanwise direction. RNS equations are used to calculate nonlinear finite amplitude “streaks”, and the results agree with those reported in the literature, typically obtained using direct numerical simulation (DNS) or nonlinear parabolized stability equations (PSE). “Streaks” simulations through the RNS integration are much cheaper than using DNS, and avoid stability problems that appear in the PSE when the amplitude of the “streak” is not small. The RNS integration code is also used to calculate the “streaks” that naturally emerge at the leading edge of a flat plate boundary layer in the absence of any free stream perturbations. Up to now, the existing results for these “streaks” have been only calculated in the linear limit (small amplitude), and in this thesis their calculation is carried out in the fully nonlinear regime (finite amplitude). In the second part of the thesis, the RNS code is generalized to include the possibility of having a non-flat plate, curved in the spanwise direction and slowly varying in the streamwise direction. This is achieved by applying a change of coordinates, which transforms the physical domain into a rectangular one. The RNS formulation expressed in the corresponding curvilinear coordinates is also numerically integrated. This generalized RNS code is finally used to study the boundary layer flow over a plate with grooves which vary slowly in the streamwise direction; and this code is used to simulate the flow over grooves that grow in the streamwise direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method, using boundary elements, is presented as a solution to plane transient heat conduction. The proposed method considers the governing equation to be a Helmholtz's equation and solves the problem of time variation using step by step integration. A numerical procedure is developed and its effectiveness verified. Several examples are provided and their results compared with the theoretical ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider non-negative solution of a chemotaxis system with non constant chemotaxis sensitivity function X. This system appears as a limit case of a model formorphogenesis proposed by Bollenbach et al. (Phys. Rev. E. 75, 2007).Under suitable boundary conditions, modeling the presence of a morphogen source at x=0, we prove the existence of a global and bounded weak solution using an approximation by problems where diffusion is introduced in the ordinary differential equation. Moreover,we prove the convergence of the solution to the unique steady state provided that ? is small and ? is large enough. Numerical simulations both illustrate these results and give rise to further conjectures on the solution behavior that go beyond the rigorously proved statements.