58 resultados para Pontoon-bridges, Military.
Resumo:
Within both aesthetic and history fields, civil engineering occupies a privileged place among arts whose manifestations are based on drawing. In this work, Leonardo’s creativity concerned with civil bridges proyects, have been studied. Leonardo designed ten bridges: eight of them intended for military porposes and only two were purely planned for civil functionaly - “Ponte sul corno d’oro”, infolio 66, manuscript L; and “Ponte a due piani”, represented in the Manuscript B at the Institute of France, infolio 23. There can be no doubt about Leonardo’s intentions when he started on designing these two bridges: his genious for creativy focused on providing both singulary and functionaly to the structures: they should be admired and utilized at the same time, a monument for civil society to be used.The work presented here attemps to make an scientist-historical trip along these Leonardo’s bridges, highlighting their technical, geometrical and aesthetic characteristics, as well as emphasizing Leonardo’s human, scientist and artistic nature.
Resumo:
In this work a methodology for analysing the lateral coupled behavior of large viaducts and high-speed trains is proposed. The finite element method is used for the structure, multibody techniques are applied for vehicles and the interaction between them is established introducing wheel-rail nonlinear contact forces. This methodology is applied for the analysis of the railway viaduct of the R´ıo Barbantino, which is a very long and tall bridge in the north-west spanish high-speed line.
Resumo:
Railway bridges have specific requirements related to safety, which often are critical aspects of design. In this paper the main phenomena are reviewed, namely vertical dynamic effects for impact effect of moving loads and resonance in high-speed, service limit states which affect the safety of running traffic, and lateral dynamic effects.
Resumo:
Conservation laws for an inviscid liquid bridge set into motion by conservative forces are given in integral form. These laws provide useful information on the overall motion of the bridge in the presence of unexpected or uncontrolled disturbances and could, in addition, be monitored in a computational solution of the problem as an accuracy check. Many of the resulting conservation laws are familiar to fluiddynamicists. Nevertheless, a systematic approach providing an exhaustive list of these laws reveals the existence of new conserved properties hardly deducible in the classical way. Although the present analysis concerns the case of axial, and constant, gravity it can be applied, with minor refinements, when the gravity field varies with time in both direction and intensity.
Resumo:
Under-deck cable-stayed bridges are very effective structural systems for which the strong contribution of the stay cables under live loading allows for the design of very slender decks for persistent and transient loading scenarios. Their behaviour when subjected to seismic excitation is investigated herein and a set of design criteria are presented that relate to the type and arrangement of bearings, the number and configuration of struts, and the transverse distribution of stay cables. The nonlinear behaviour of these bridges when subject to both near-field and far-field accelerograms has been thoroughly investigated through the use of incremental dynamic analyses. An intensity measure that reflects the pertinent contributions to response when several vibration modes are activated was proposed and is shown to be effective for the analysis of this structural type. The under-deck cable-stay system contributes in a very positive manner to reducing the response when the bridges are subject to very strong seismic excitation. For such scenarios, the reduction in the stiffness of the deck because of crack formation, when prestressed concrete decks are used, mobilises the cable system and enhances the overall performance of the system. Sets of natural accelerograms that are compliant with the prescriptions of Eurocode 8 were also applied to propose a set of design criteria for this bridge type in areas prone to earthquakes. Particular attention is given to outlining the optimal strategies for the deployment of bearings
Resumo:
Cable-stayed bridges represent nowadays key points in transport networks and their seismic behavior needs to be fully understood, even beyond the elastic range of materials. Both nonlinear dynamic (NL-RHA) and static (pushover) procedures are currently available to face this challenge, each with intrinsic advantages and disadvantages, and their applicability in the study of the nonlinear seismic behavior of cable-stayed bridges is discussed here. The seismic response of a large number of finite element models with different span lengths, tower shapes and class of foundation soil is obtained with different procedures and compared. Several features of the original Modal Pushover Analysis (MPA) are modified in light of cable-stayed bridge characteristics, furthermore, an extension of MPA and a new coupled pushover analysis (CNSP) are suggested to estimate the complex inelastic response of such outstanding structures subjected to multi-axial strong ground motions.
Resumo:
The physical model based on moving constant loads is widely used for the analysis of railway bridges. Nevertheless, the moving loads model is not well suited for the study of short bridges (L⩽20–25 m) since the results it produces (displacements and accelerations) are much greater than those obtained from more sophisticated ones. In this paper two factors are analysed which are believed to have an influence in the dynamic behaviour of short bridges. These two factors are not accounted for by the moving loads model and are the following: the distribution of the loads due to the presence of the sleepers and ballast layer, and the train–bridge interaction. In order to decide on their influence several numerical simulations have been performed. The results are presented and discussed herein.
Resumo:
Bridges with deck supported on either sliding or elastomeric bearings are very common in mid-seismicity regions. Their main seismic vulnerabilities are related to the pounding of the deck against abutments or between the different deck elements. A simplified model of the longitudinal behavior of those bridges will allow to characterize the reaction forces developed during pounding using the Pacific Earthquake Engineering Research Center framework formula. In order to ensure the general applicability of the results obtained, a large number of system parameter combinations will be considered. The heart of the formula is the identification of suitable intermediate variables. First, the pseudo acceleration spectral value for the fundamental period of the system (Sa(Ts)) will be used as an intensity measure (IM). This IM will result in a very large non-explained variability of the engineering demand parameter. A portion of this variability will be proved to be related to the relative content of high-frequency energy in the input motion. Two vector-valued IMs including a second parameter taking this energy content into account will then be considered. For both of them, a suitable form for the conditional intensity dependence of the response will be obtained. The question of which one to choose will also be analyzed. Finally, additional issues related to the IM will be studied: its applicability to pulse-type records, the validity of scaling records and the sufficiency of the IM.
Resumo:
The analysis of modes and natural frequencies is of primary interest in the computation of the response of bridges. In this article the transfer matrix method is applied to this problem to provide a computer code to calculate the natural frequencies and modes of bridge-like structures. The Fortran computer code is suitable for running on small computers and results are presented for a railway bridge.
Resumo:
After the experience gained during the past years it seems clear that nonlinear analysis of bridges are very important to compute ductility demands and to localize potential hinges. This is specially true for irregular bridges in which it is not clear weather or not it is possible to use a linear computation followed by a correction using a behaviour factor. To simplify the numerical effort several approximate methods have been proposed. Among them, the so-called Dynamic Plastic Hinge Method in which an evolutionary shape function is used to reduce the structure to a single degree of freedom system seems to mantein a good balance between accuracy and simplicity. This paper presents results obtained in a parametric study conducted under the auspicies of PREC-8 european research program.
Resumo:
A simplified analytical model of a short span bridge is proposed. The inertial interaction effects of pier foundations and abutments has been included in order to evaluate the response sensitivities to different soil-structure interaction variables. The modification of natural frequency and damping properties is shown for typical short span bridges of the integral deck-abutment type for longitudinal vibrations or general bridges for the transverse ones.
Resumo:
The paper describes the main features of a technical Recommendation first draft on Seismic Actions on Bridges, promoted by the Spanish Ministry of Public Works (MOPT). Although much more research is needed to clarify the seismic behaviour of the vast class of problems present in port structures the current state of the art allows at least a classificaton of subjects and the establishment of minimum requirements to guide the design. Also the use of more refined methods for specially dangerous situations needs some general guidelines that contribute to mantein the design under reasonable safety margins. The Recommendations of the Spanish MOPT are a first try in those directions.
Resumo:
The paper describes a simple approach to study the importance of local modes in the dimensioning load of bridge columns.
Resumo:
The dynamic effects of high-speed trains on viaducts are important issues for the design of the structures, as well as for the consideration of safe running conditions for the trains. In this work we start by reviewing the relevance of some basic design aspects. The significance of impact factor envelopes for moving loads is considered first. Resonance which may be achieved for high-speed trains requires dynamic analysis, for which some key aspects are discussed. The relevance of performing a longitudinal distribution of axle loads, the number of modes taken in analysis, and the consideration of vehicle-structure interaction are discussed with representative examples. The lateral dynamic effects of running trains on bridges is of importance for laterally compliant viaducts, such as some very tall structures erected in new high-speed lines. The relevance of this study is mainly for the safety of the traffic, considering both internal actions such as the hunting motion as well as external actions such as wind or earthquakes [1]. These studies require three-dimensional dynamic coupled vehicle-bridge models, and consideration of wheel to rail contact, a phenomenon which is complex and costly to model in detail. We describe here a fully nonlinear coupled model, described in absolute coordinates and incorporated into a commercial finite element framework [2]. The wheel-rail contact has been considered using a FastSim algorithm which provides a compromise between accuracy and computational cost, and captures the main nonlinear response of the contact interface. Two applications are presented, firstly to a vehicle subject to a strong wind gust traversing a bridge, showing the relevance of the nonlinear wheel-rail contact model as well as the dynamic interaction between bridge and vehicle. The second application is to a real HS viaduct with a long continuous deck and tall piers and high lateral compliance [3]. The results show the safety of the traffic as well as the importance of considering features such as track alignment irregularities.
Resumo:
During the years 2001 to 2007 it has been constructed in Spain the new railway line of high speed (L. H. S.)that connects Madrid with Valladolid with a length of 179.6 kilometres.