32 resultados para PROPOSED APPROACH


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent approaches to mobile code safety, like proof- arrying code, involve associating safety information to programs. The code supplier provides a program and also includes with it a certifícate (or proof) whose validity entails compliance with a predefined safety policy. The intended benefit is that the program consumer can locally validate the certifícate w.r.t. the "untrusted" program by means of a certifícate checker—a process which should be much simpler, eflicient, and automatic than generating the original proof. We herein introduce a novel approach to mobile code safety which follows a similar scheme, but which is based throughout on the use of abstract interpretation techniques. In our framework the safety policy is specified by using an expressive assertion language defined over abstract domains. We identify a particular slice of the abstract interpretation-based static analysis results which is especially useful as a certifícate. We propose an algorithm for checking the validity of the certifícate on the consumer side which is itself in fact a very simplified and eflicient specialized abstract-interpreter. Our ideas are illustrated through an example implemented in the CiaoPP system. Though further experimentation is still required, we believe the proposed approach is of interest for bringing the automation and expressiveness which is inherent in the abstract interpretation techniques to the área of mobile code safety.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider the problem of supporting goal-level, independent andparallelism (IAP) in the presence of non-determinism. IAP is exploited when two or more goals which will not interfere at run time are scheduled for simultaneous execution. Backtracking over non-deterministic parallel goals runs into the wellknown trapped goal and garbage slot problems. The proposed solutions for these problems generally require complex low-level machinery which makes systems difficult to maintain and extend, and in some cases can even affect sequential execution performance. In this paper we propose a novel solution to the problem of trapped nondeterministic goals and garbage slots which is based on a single stack reordering operation and offers several advantages over previous proposals. While the implementation of this operation itself is not simple, in return it does not impose constraints on the scheduler. As a result, the scheduler and the rest of the run-time machinery can safely ignore the trapped goal and garbage slot problems and their implementation is greatly simplified. Also, standard sequential execution remains unaffected. In addition to describing the solution we report on an implementation and provide performance results. We also suggest other possible applications of the proposed approach beyond parallel execution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN) for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR) image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then supplied to the HNN optimization approach. The goal is to improve the classification results obtained by the Wishart approach. The classification improvement is verified by computing a cluster separability coefficient and a measure of homogeneity within the clusters. During the HNN optimization process, for each iteration and for each pixel, two consistency coefficients are computed, taking into account two types of relations between the pixel under consideration and its corresponding neighbors. Based on these coefficients and on the information coming from the pixel itself, the pixel under study is re-classified. Different experiments are carried out to verify that the proposed approach outperforms other strategies, achieving the best results in terms of separability and a trade-off with the homogeneity preserving relevant structures in the image. The performance is also measured in terms of computational central processing unit (CPU) times.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A boundary element approach for time harmonic axisymmetric problems using the complete space point load fundamental solution is presented. The fundamental solution is integrated numerically along the azimuthal co-ordinate of each axisymmetric element. To increase the accuracy of the numerical integration a simple co-ordinate transformation is proposed. The approach is applied to the computation of the dynamic stiffness functions of rigid circular foundations on layered viscoelastic soils. Three different sites are considered: a uniform half-space, a soil layer on a half-space, and a soil consisting of four horizontal layers and a compliant half-space. The numerical results obtained by the proposed approach for surface circular foundations are very close to corresponding published results obtained by different procedures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity, and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization algorithm for scenarios where received signal strength indicator readings are used. We approach the localization problem by formulating an alternative problem that uses distance estimates locally computed at each node. The formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which the relaxed problem yields to the same solution as the original problem are given and a distributed consensusbased implementation of the algorithm is proposed based on an augmented Lagrangian approach and primaldual decomposition methods. Although suboptimal, the proposed approach is very suitable for its implementation in real sensor networks, i.e., it is scalable, robust against node failures and requires only local communication among neighboring nodes. Simulation results show that running an additional local search around the found solution can yield performance close to the maximum likelihood estimate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports on an innovative approach that aims to reduce information management costs in data-intensive and cognitively-complex biomedical environments. Recognizing the importance of prominent high-performance computing paradigms and large data processing technologies as well as collaboration support systems to remedy data-intensive issues, it adopts a hybrid approach by building on the synergy of these technologies. The proposed approach provides innovative Web-based workbenches that integrate and orchestrate a set of interoperable services that reduce the data-intensiveness and complexity overload at critical decision points to a manageable level, thus permitting stakeholders to be more productive and concentrate on creative activities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge about the quality characteristics (QoS) of service com- positions is crucial for determining their usability and economic value. Ser- vice quality is usually regulated using Service Level Agreements (SLA). While end-to-end SLAs are well suited for request-reply interactions, more complex, decentralized, multiparticipant compositions (service choreographies) typ- ically involve multiple message exchanges between stateful parties and the corresponding SLAs thus encompass several cooperating parties with interde- pendent QoS. The usual approaches to determining QoS ranges structurally (which are by construction easily composable) are not applicable in this sce- nario. Additionally, the intervening SLAs may depend on the exchanged data. We present an approach to data-aware QoS assurance in choreographies through the automatic derivation of composable QoS models from partici- pant descriptions. Such models are based on a message typing system with size constraints and are derived using abstract interpretation. The models ob- tained have multiple uses including run-time prediction, adaptive participant selection, or design-time compliance checking. We also present an experimen- tal evaluation and discuss the benefits of the proposed approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we propose a novel fast random search clustering (RSC) algorithm for mixing matrix identification in multiple input multiple output (MIMO) linear blind inverse problems with sparse inputs. The proposed approach is based on the clustering of the observations around the directions given by the columns of the mixing matrix that occurs typically for sparse inputs. Exploiting this fact, the RSC algorithm proceeds by parameterizing the mixing matrix using hyperspherical coordinates, randomly selecting candidate basis vectors (i.e. clustering directions) from the observations, and accepting or rejecting them according to a binary hypothesis test based on the Neyman–Pearson criterion. The RSC algorithm is not tailored to any specific distribution for the sources, can deal with an arbitrary number of inputs and outputs (thus solving the difficult under-determined problem), and is applicable to both instantaneous and convolutive mixtures. Extensive simulations for synthetic and real data with different number of inputs and outputs, data size, sparsity factors of the inputs and signal to noise ratios confirm the good performance of the proposed approach under moderate/high signal to noise ratios. RESUMEN. Método de separación ciega de fuentes para señales dispersas basado en la identificación de la matriz de mezcla mediante técnicas de "clustering" aleatorio.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transmission errors are the main cause of degradation of the quality of real broadcasted video services. Therefore, knowing their impact on the quality of experience of the end users is a crucial issue. For instance, it would help to improve the performance of the distribution systems, and to develop monitoring tools to automatically estimate the quality perceived by the end users. In this paper we validate a subjective evaluation approach specifically designed to obtain meaningful results of the effects of degradations caused by transmission errors. This methodology has been already used in our previous works with monoscopic and stereoscopic videos. The validation is done by comparing the subjective ratings obtained for typical transmission errors with the proposed methodology and with the standard method Absolute Category Rating. The results show that the proposed approach could provide more representative evaluations of the quality of experience perceived by end users of conventional and 3D broadcasted video services.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays, there is an uprising social pressure on big companies to incorporate into their decision-making process elements of the so-called social responsibility. Among the many implications of this fact, one relevant one is the need to include this new element in classic portfolio selection models. This paper meets this challenge by formulating a model that combines goal programming with "goal games" against nature in a scenario where the social responsibility is defined through the introduction of a battery of sustainability indicators amalgamated into a synthetic index. In this way, we have obtained an efficient model that only implies solving a small number of linear programming problems. The proposed approach has been tested and illustrated by using a case study related to the selection of securities in international markets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays computing platforms consist of a very large number of components that require to be supplied with diferent voltage levels and power requirements. Even a very small platform, like a handheld computer, may contain more than twenty diferent loads and voltage regulators. The power delivery designers of these systems are required to provide, in a very short time, the right power architecture that optimizes the performance, meets electrical specifications plus cost and size targets. The appropriate selection of the architecture and converters directly defines the performance of a given solution. Therefore, the designer needs to be able to evaluate a significant number of options in order to know with good certainty whether the selected solutions meet the size, energy eficiency and cost targets. The design dificulties of selecting the right solution arise due to the wide range of power conversion products provided by diferent manufacturers. These products range from discrete components (to build converters) to complete power conversion modules that employ diferent manufacturing technologies. Consequently, in most cases it is not possible to analyze all the alternatives (combinations of power architectures and converters) that can be built. The designer has to select a limited number of converters in order to simplify the analysis. In this thesis, in order to overcome the mentioned dificulties, a new design methodology for power supply systems is proposed. This methodology integrates evolutionary computation techniques in order to make possible analyzing a large number of possibilities. This exhaustive analysis helps the designer to quickly define a set of feasible solutions and select the best trade-off in performance according to each application. The proposed approach consists of two key steps, one for the automatic generation of architectures and other for the optimized selection of components. In this thesis are detailed the implementation of these two steps. The usefulness of the methodology is corroborated by contrasting the results using real problems and experiments designed to test the limits of the algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we propose a new method for the automatic detection and tracking of road traffic signs using an on-board single camera. This method aims to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. The proposed approach exploits a combination of different features, such as color, appearance, and tracking information. This information is introduced into a recursive Bayesian decision framework, in which prior probabilities are dynamically adapted to tracking results. This decision scheme obtains a number of candidate regions in the image, according to their HS (Hue-Saturation). Finally, a Kalman filter with an adaptive noise tuning provides the required time and spatial coherence to the estimates. Results have shown that the proposed method achieves high detection rates in challenging scenarios, including illumination changes, rapid motion and significant perspective distortion

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The liberalization of electricity markets more than ten years ago in the vast majority of developed countries has introduced the need of modelling and forecasting electricity prices and volatilities, both in the short and long term. Thus, there is a need of providing methodology that is able to deal with the most important features of electricity price series, which are well known for presenting not only structure in conditional mean but also time-varying conditional variances. In this work we propose a new model, which allows to extract conditionally heteroskedastic common factors from the vector of electricity prices. These common factors are jointly estimated as well as their relationship with the original vector of series, and the dynamics affecting both their conditional mean and variance. The estimation of the model is carried out under the state-space formulation. The new model proposed is applied to extract seasonal common dynamic factors as well as common volatility factors for electricity prices and the estimation results are used to forecast electricity prices and their volatilities in the Spanish zone of the Iberian Market. Several simplified/alternative models are also considered as benchmarks to illustrate that the proposed approach is superior to all of them in terms of explanatory and predictive power.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current trends in the European Higher Education Area (EHEA) are moving towards the continuous evaluation of the students in substitution of the traditional evaluation based on a single test or exam. This fact and the increase in the number of students during last years in Engineering Schools, requires to modify evaluation procedures making them compatible with the educational and research activities. This work presents a methodology for the automatic generation of questions. These questions can be used as self assessment questions by the student and/or as queries by the teacher. The proposed approach is based on the utilization of parametric questions, formulated as multiple choice questions and generated and supported by the utilization of common programs of data sheets and word processors. Through this approach, every teacher can apply the proposed methodology without the use of programs or tools different from those normally used in his/her daily activity