58 resultados para P06 Recursos renovables de energía


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hoy en día, el proceso de un proyecto sostenible persigue realizar edificios de elevadas prestaciones que son, energéticamente eficientes, saludables y económicamente viables utilizando sabiamente recursos renovables para minimizar el impacto sobre el medio ambiente reduciendo, en lo posible, la demanda de energía, lo que se ha convertido, en la última década, en una prioridad. La Directiva 2002/91/CE "Eficiencia Energética de los Edificios" (y actualizaciones posteriores) ha establecido el marco regulatorio general para el cálculo de los requerimientos energéticos mínimos. Desde esa fecha, el objetivo de cumplir con las nuevas directivas y protocolos ha conducido las políticas energéticas de los distintos países en la misma dirección, centrándose en la necesidad de aumentar la eficiencia energética en los edificios, la adopción de medidas para reducir el consumo, y el fomento de la generación de energía a través de fuentes renovables. Los edificios de energía nula o casi nula (ZEB, Zero Energy Buildings ó NZEB, Net Zero Energy Buildings) deberán convertirse en un estándar de la construcción en Europa y con el fin de equilibrar el consumo de energía, además de reducirlo al mínimo, los edificios necesariamente deberán ser autoproductores de energía. Por esta razón, la envolvente del edifico y en particular las fachadas son importantes para el logro de estos objetivos y la tecnología fotovoltaica puede tener un papel preponderante en este reto. Para promover el uso de la tecnología fotovoltaica, diferentes programas de investigación internacionales fomentan y apoyan soluciones para favorecer la integración completa de éstos sistemas como elementos arquitectónicos y constructivos, los sistemas BIPV (Building Integrated Photovoltaic), sobre todo considerando el próximo futuro hacia edificios NZEB. Se ha constatado en este estudio que todavía hay una falta de información útil disponible sobre los sistemas BIPV, a pesar de que el mercado ofrece una interesante gama de soluciones, en algunos aspectos comparables a los sistemas tradicionales de construcción. Pero por el momento, la falta estandarización y de una regulación armonizada, además de la falta de información en las hojas de datos técnicos (todavía no comparables con las mismas que están disponibles para los materiales de construcción), hacen difícil evaluar adecuadamente la conveniencia y factibilidad de utilizar los componentes BIPV como parte integrante de la envolvente del edificio. Organizaciones internacionales están trabajando para establecer las normas adecuadas y procedimientos de prueba y ensayo para comprobar la seguridad, viabilidad y fiabilidad estos sistemas. Sin embargo, hoy en día, no hay reglas específicas para la evaluación y caracterización completa de un componente fotovoltaico de integración arquitectónica de acuerdo con el Reglamento Europeo de Productos de la Construcción, CPR 305/2011. Los productos BIPV, como elementos de construcción, deben cumplir con diferentes aspectos prácticos como resistencia mecánica y la estabilidad; integridad estructural; seguridad de utilización; protección contra el clima (lluvia, nieve, viento, granizo), el fuego y el ruido, aspectos que se han convertido en requisitos esenciales, en la perspectiva de obtener productos ambientalmente sostenibles, saludables, eficientes energéticamente y económicamente asequibles. Por lo tanto, el módulo / sistema BIPV se convierte en una parte multifuncional del edificio no sólo para ser física y técnicamente "integrado", además de ser una oportunidad innovadora del diseño. Las normas IEC, de uso común en Europa para certificar módulos fotovoltaicos -IEC 61215 e IEC 61646 cualificación de diseño y homologación del tipo para módulos fotovoltaicos de uso terrestre, respectivamente para módulos fotovoltaicos de silicio cristalino y de lámina delgada- atestan únicamente la potencia del módulo fotovoltaico y dan fe de su fiabilidad por un período de tiempo definido, certificando una disminución de potencia dentro de unos límites. Existe también un estándar, en parte en desarrollo, el IEC 61853 (“Ensayos de rendimiento de módulos fotovoltaicos y evaluación energética") cuyo objetivo es la búsqueda de procedimientos y metodologías de prueba apropiados para calcular el rendimiento energético de los módulos fotovoltaicos en diferentes condiciones climáticas. Sin embargo, no existen ensayos normalizados en las condiciones específicas de la instalación (p. ej. sistemas BIPV de fachada). Eso significa que es imposible conocer las efectivas prestaciones de estos sistemas y las condiciones ambientales que se generan en el interior del edificio. La potencia nominal de pico Wp, de un módulo fotovoltaico identifica la máxima potencia eléctrica que éste puede generar bajo condiciones estándares de medida (STC: irradición 1000 W/m2, 25 °C de temperatura del módulo y distribución espectral, AM 1,5) caracterizando eléctricamente el módulo PV en condiciones específicas con el fin de poder comparar los diferentes módulos y tecnologías. El vatio pico (Wp por su abreviatura en inglés) es la medida de la potencia nominal del módulo PV y no es suficiente para evaluar el comportamiento y producción del panel en términos de vatios hora en las diferentes condiciones de operación, y tampoco permite predecir con convicción la eficiencia y el comportamiento energético de un determinado módulo en condiciones ambientales y de instalación reales. Un adecuado elemento de integración arquitectónica de fachada, por ejemplo, debería tener en cuenta propiedades térmicas y de aislamiento, factores como la transparencia para permitir ganancias solares o un buen control solar si es necesario, aspectos vinculados y dependientes en gran medida de las condiciones climáticas y del nivel de confort requerido en el edificio, lo que implica una necesidad de adaptación a cada contexto específico para obtener el mejor resultado. Sin embargo, la influencia en condiciones reales de operación de las diferentes soluciones fotovoltaicas de integración, en el consumo de energía del edificio no es fácil de evaluar. Los aspectos térmicos del interior del ambiente o de iluminación, al utilizar módulos BIPV semitransparentes por ejemplo, son aún desconocidos. Como se dijo antes, la utilización de componentes de integración arquitectónica fotovoltaicos y el uso de energía renovable ya es un hecho para producir energía limpia, pero también sería importante conocer su posible contribución para mejorar el confort y la salud de los ocupantes del edificio. Aspectos como el confort, la protección o transmisión de luz natural, el aislamiento térmico, el consumo energético o la generación de energía son aspectos que suelen considerarse independientemente, mientras que todos juntos contribuyen, sin embargo, al balance energético global del edificio. Además, la necesidad de dar prioridad a una orientación determinada del edificio, para alcanzar el mayor beneficio de la producción de energía eléctrica o térmica, en el caso de sistemas activos y pasivos, respectivamente, podría hacer estos últimos incompatibles, pero no necesariamente. Se necesita un enfoque holístico que permita arquitectos e ingenieros implementar sistemas tecnológicos que trabajen en sinergia. Se ha planteado por ello un nuevo concepto: "C-BIPV, elemento fotovoltaico consciente integrado", esto significa necesariamente conocer los efectos positivos o negativos (en términos de confort y de energía) en condiciones reales de funcionamiento e instalación. Propósito de la tesis, método y resultados Los sistemas fotovoltaicos integrados en fachada son a menudo soluciones de vidrio fácilmente integrables, ya que por lo general están hechos a medida. Estos componentes BIPV semitransparentes, integrados en el cerramiento proporcionan iluminación natural y también sombra, lo que evita el sobrecalentamiento en los momentos de excesivo calor, aunque como componente estático, asimismo evitan las posibles contribuciones pasivas de ganancias solares en los meses fríos. Además, la temperatura del módulo varía considerablemente en ciertas circunstancias influenciada por la tecnología fotovoltaica instalada, la radiación solar, el sistema de montaje, la tipología de instalación, falta de ventilación, etc. Este factor, puede suponer un aumento adicional de la carga térmica en el edificio, altamente variable y difícil de cuantificar. Se necesitan, en relación con esto, más conocimientos sobre el confort ambiental interior en los edificios que utilizan tecnologías fotovoltaicas integradas, para abrir de ese modo, una nueva perspectiva de la investigación. Con este fin, se ha diseñado, proyectado y construido una instalación de pruebas al aire libre, el BIPV Env-lab "BIPV Test Laboratory", para la caracterización integral de los diferentes módulos semitransparentes BIPV. Se han definido también el método y el protocolo de ensayos de caracterización en el contexto de un edificio y en condiciones climáticas y de funcionamiento reales. Esto ha sido posible una vez evaluado el estado de la técnica y la investigación, los aspectos que influyen en la integración arquitectónica y los diferentes tipos de integración, después de haber examinado los métodos de ensayo para los componentes de construcción y fotovoltaicos, en condiciones de operación utilizadas hasta ahora. El laboratorio de pruebas experimentales, que consiste en dos habitaciones idénticas a escala real, 1:1, ha sido equipado con sensores y todos los sistemas de monitorización gracias a los cuales es posible obtener datos fiables para evaluar las prestaciones térmicas, de iluminación y el rendimiento eléctrico de los módulos fotovoltaicos. Este laboratorio permite el estudio de tres diferentes aspectos que influencian el confort y consumo de energía del edificio: el confort térmico, lumínico, y el rendimiento energético global (demanda/producción de energía) de los módulos BIPV. Conociendo el balance de energía para cada tecnología solar fotovoltaica experimentada, es posible determinar cuál funciona mejor en cada caso específico. Se ha propuesto una metodología teórica para la evaluación de estos parámetros, definidos en esta tesis como índices o indicadores que consideran cuestiones relacionados con el bienestar, la energía y el rendimiento energético global de los componentes BIPV. Esta metodología considera y tiene en cuenta las normas reglamentarias y estándares existentes para cada aspecto, relacionándolos entre sí. Diferentes módulos BIPV de doble vidrio aislante, semitransparentes, representativos de diferentes tecnologías fotovoltaicas (tecnología de silicio monocristalino, m-Si; de capa fina en silicio amorfo unión simple, a-Si y de capa fina en diseleniuro de cobre e indio, CIS) fueron seleccionados para llevar a cabo una serie de pruebas experimentales al objeto de demostrar la validez del método de caracterización propuesto. Como resultado final, se ha desarrollado y generado el Diagrama Caracterización Integral DCI, un sistema gráfico y visual para representar los resultados y gestionar la información, una herramienta operativa útil para la toma de decisiones con respecto a las instalaciones fotovoltaicas. Este diagrama muestra todos los conceptos y parámetros estudiados en relación con los demás y ofrece visualmente toda la información cualitativa y cuantitativa sobre la eficiencia energética de los componentes BIPV, por caracterizarlos de manera integral. ABSTRACT A sustainable design process today is intended to produce high-performance buildings that are energy-efficient, healthy and economically feasible, by wisely using renewable resources to minimize the impact on the environment and to reduce, as much as possible, the energy demand. In the last decade, the reduction of energy needs in buildings has become a top priority. The Directive 2002/91/EC “Energy Performance of Buildings” (and its subsequent updates) established a general regulatory framework’s methodology for calculation of minimum energy requirements. Since then, the aim of fulfilling new directives and protocols has led the energy policies in several countries in a similar direction that is, focusing on the need of increasing energy efficiency in buildings, taking measures to reduce energy consumption, and fostering the use of renewable sources. Zero Energy Buildings or Net Zero Energy Buildings will become a standard in the European building industry and in order to balance energy consumption, buildings, in addition to reduce the end-use consumption should necessarily become selfenergy producers. For this reason, the façade system plays an important role for achieving these energy and environmental goals and Photovoltaic can play a leading role in this challenge. To promote the use of photovoltaic technology in buildings, international research programs encourage and support solutions, which favors the complete integration of photovoltaic devices as an architectural element, the so-called BIPV (Building Integrated Photovoltaic), furthermore facing to next future towards net-zero energy buildings. Therefore, the BIPV module/system becomes a multifunctional building layer, not only physically and functionally “integrated” in the building, but also used as an innovative chance for the building envelope design. It has been found in this study that there is still a lack of useful information about BIPV for architects and designers even though the market is providing more and more interesting solutions, sometimes comparable to the existing traditional building systems. However at the moment, the lack of an harmonized regulation and standardization besides to the non-accuracy in the technical BIPV datasheets (not yet comparable with the same ones available for building materials), makes difficult for a designer to properly evaluate the fesibility of this BIPV components when used as a technological system of the building skin. International organizations are working to establish the most suitable standards and test procedures to check the safety, feasibility and reliability of BIPV systems. Anyway, nowadays, there are no specific rules for a complete characterization and evaluation of a BIPV component according to the European Construction Product Regulation, CPR 305/2011. BIPV products, as building components, must comply with different practical aspects such as mechanical resistance and stability; structural integrity; safety in use; protection against weather (rain, snow, wind, hail); fire and noise: aspects that have become essential requirements in the perspective of more and more environmentally sustainable, healthy, energy efficient and economically affordable products. IEC standards, commonly used in Europe to certify PV modules (IEC 61215 and IEC 61646 respectively crystalline and thin-film ‘Terrestrial PV Modules-Design Qualification and Type Approval’), attest the feasibility and reliability of PV modules for a defined period of time with a limited power decrease. There is also a standard (IEC 61853, ‘Performance Testing and Energy Rating of Terrestrial PV Modules’) still under preparation, whose aim is finding appropriate test procedures and methodologies to calculate the energy yield of PV modules under different climate conditions. Furthermore, the lack of tests in specific conditions of installation (e.g. façade BIPV devices) means that it is difficult knowing the exact effective performance of these systems and the environmental conditions in which the building will operate. The nominal PV power at Standard Test Conditions, STC (1.000 W/m2, 25 °C temperature and AM 1.5) is usually measured in indoor laboratories, and it characterizes the PV module at specific conditions in order to be able to compare different modules and technologies on a first step. The “Watt-peak” is not enough to evaluate the panel performance in terms of Watt-hours of various modules under different operating conditions, and it gives no assurance of being able to predict the energy performance of a certain module at given environmental conditions. A proper BIPV element for façade should take into account thermal and insulation properties, factors as transparency to allow solar gains if possible or a good solar control if necessary, aspects that are linked and high dependent on climate conditions and on the level of comfort to be reached. However, the influence of different façade integrated photovoltaic solutions on the building energy consumption is not easy to assess under real operating conditions. Thermal aspects, indoor temperatures or luminance level that can be expected using building integrated PV (BIPV) modules are not well known. As said before, integrated photovoltaic BIPV components and the use of renewable energy is already a standard for green energy production, but would also be important to know the possible contribution to improve the comfort and health of building occupants. Comfort, light transmission or protection, thermal insulation or thermal/electricity power production are aspects that are usually considered alone, while all together contribute to the building global energy balance. Besides, the need to prioritize a particular building envelope orientation to harvest the most benefit from the electrical or thermal energy production, in the case of active and passive systems respectively might be not compatible, but also not necessary. A holistic approach is needed to enable architects and engineers implementing technological systems working in synergy. A new concept have been suggested: “C-BIPV, conscious integrated BIPV”. BIPV systems have to be “consciously integrated” which means that it is essential to know the positive and negative effects in terms of comfort and energy under real operating conditions. Purpose of the work, method and results The façade-integrated photovoltaic systems are often glass solutions easily integrable, as they usually are custommade. These BIPV semi-transparent components integrated as a window element provides natural lighting and shade that prevents overheating at times of excessive heat, but as static component, likewise avoid the possible solar gains contributions in the cold months. In addition, the temperature of the module varies considerably in certain circumstances influenced by the PV technology installed, solar radiation, mounting system, lack of ventilation, etc. This factor may result in additional heat input in the building highly variable and difficult to quantify. In addition, further insights into the indoor environmental comfort in buildings using integrated photovoltaic technologies are needed to open up thereby, a new research perspective. This research aims to study their behaviour through a series of experiments in order to define the real influence on comfort aspects and on global energy building consumption, as well as, electrical and thermal characteristics of these devices. The final objective was to analyze a whole set of issues that influence the global energy consumption/production in a building using BIPV modules by quantifying the global energy balance and the BIPV system real performances. Other qualitative issues to be studied were comfort aspect (thermal and lighting aspects) and the electrical behaviour of different BIPV technologies for vertical integration, aspects that influence both energy consumption and electricity production. Thus, it will be possible to obtain a comprehensive global characterization of BIPV systems. A specific design of an outdoor test facility, the BIPV Env-lab “BIPV Test Laboratory”, for the integral characterization of different BIPV semi-transparent modules was developed and built. The method and test protocol for the BIPV characterization was also defined in a real building context and weather conditions. This has been possible once assessed the state of the art and research, the aspects that influence the architectural integration and the different possibilities and types of integration for PV and after having examined the test methods for building and photovoltaic components, under operation conditions heretofore used. The test laboratory that consists in two equivalent test rooms (1:1) has a monitoring system in which reliable data of thermal, daylighting and electrical performances can be obtained for the evaluation of PV modules. The experimental set-up facility (testing room) allows studying three different aspects that affect building energy consumption and comfort issues: the thermal indoor comfort, the lighting comfort and the energy performance of BIPV modules tested under real environmental conditions. Knowing the energy balance for each experimented solar technology, it is possible to determine which one performs best. A theoretical methodology has been proposed for evaluating these parameters, as defined in this thesis as indices or indicators, which regard comfort issues, energy and the overall performance of BIPV components. This methodology considers the existing regulatory standards for each aspect, relating them to one another. A set of insulated glass BIPV modules see-through and light-through, representative of different PV technologies (mono-crystalline silicon technology, mc-Si, amorphous silicon thin film single junction, a-Si and copper indium selenide thin film technology CIS) were selected for a series of experimental tests in order to demonstrate the validity of the proposed characterization method. As result, it has been developed and generated the ICD Integral Characterization Diagram, a graphic and visual system to represent the results and manage information, a useful operational tool for decision-making regarding to photovoltaic installations. This diagram shows all concepts and parameters studied in relation to each other and visually provides access to all the results obtained during the experimental phase to make available all the qualitative and quantitative information on the energy performance of the BIPV components by characterizing them in a comprehensive way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La finalidad de este documento es la redacción del proyecto de un futuro parque eólico Off-Shore en la costa del País Vasco, de la manera más clara, detallada y simple posible. Se tratará de cumplir los siguientes objetivos: Servir de soporte técnico para llevar a cabo la realización del parque eólico offshore en la costa vasca, en el término municipal de Ondárroa. Estudiar de manera detallada las posibles alternativas y obtener la solución más óptima y viable tanto funcional como económicamente.Ilustrar el modo de realización de los parques eólicos offshore junto con otros proyectos análogos a modo de guía para futuros proyectos de este tipo.Impulsar la construcción de parques eólicos marinos en España, para cumplir el Plan de Energías Renovables 2005-2011 integrado en el marco comunitario e internacional, ya que la C.E.E. se ha propuesto que las energías renovables participen con un 20% en el consumo energético total de la Unión en el año 2020.Motivar a las Diputaciones del País Vasco y a sus juntas municipales respecto a la apuesta por este modo de energía renovable, pionero a día de hoy en España, como ejemplo para otras Comunidades Autónomas y otras Administraciones Públicas potenciando la implantación de este nuevo modelo de tecnología sensible con el medioambiente. Por tanto, La energía eólica marina se considera como uno de los recursos renovables que más decididamente pueden contribuir a conseguir los objetivos anteriores en la Unión Europea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente trabajo, desarrollado en el marco del Convenio de Cooperación educativa entre la ETSII - UPM y el Ciemat, se realiza con el fin de determinar líneas futuras de investigación y/o aplicación de la tecnología de gasificación termoquímica de biomasa integrada a motores de combustión interna alternativos (MCIA) para generación de potencia, motivados por la necesidad de reducir las emisiones contaminantes, aumentar el uso de las fuentes renovables de energía, reducir la dependencia económica de los combustibles fósiles, aprovechar energéticamente infinidad de residuos del sector agroindustrial y por la necesidad de generar energía a base de combustibles autóctonos que permitan resolver los problemas de suministro eléctrico en zonas no interconectadas eléctricamente en países en vía de desarrollo. En el capítulo 1 se comienza por presentar los objetivos y la justificación del presente trabajo, se enmarca esta tecnología desde el punto de vista histórico, de los combustibles y de los gasógenos, que fue la primera aplicación extendida masivamente durante las dos guerras mundiales en Europa. Además se hace un breve recuento de los principales grupos de investigación y fabricantes a nivel comercial que actualmente trabajan en el desarrollo de esta tecnología. En el capítulo 2 se hacer una breve descripción del proceso de gasificación termoquímica, mostrando los diferentes tipos de gasificadores existentes, las propiedades del combustible primario usado y los factores que afectan la eficiencia de este proceso. En el capítulo 3 se estudia el gas de gasificación desde el punto de vista de la composición, propiedades como combustible motor, requisitos, tratamiento necesario para su uso como combustible en motores de combustión interna, otros usos del GG y riesgos que conlleva su utilización. En el capítulo 4 se presentan un estudio general de los motores de gas, donde se presenta una clasificación, se estudia la manera de regular la operación de estos motores, se hace una descripción cualitativa de la combustión, se muestran algunas aplicaciones y se estudia la combustión en los motores a gas desde el punto de vista de los factores que la afectan. En el capítulo 5 se entra en profundidad sobre el uso del gas de gasificación -GG en MCIA, inicialmente estudiado desde el punto de vista teórico, luego presentando los resultados de varias investigaciones realizadas y por último mostrando algunos de las aplicaciones comerciales actualmente en el mercado. Finalmente se presentan las conclusiones, la bibliografía consultada y un glosario de términos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La finalidad de este documento es la redaccion del proyecto de un futuro parque eolico offshore en la costa Cantabra, mas concretamente en el termino municipal de San Vicente de la Barquera, de la manera mas clara, detallada y simple posible, tratando de cumplir los siguientes objetivos: Servir de soporte tecnico para llevar a cabo la realizacion del parque eolico offshore en la costa asturiana, en el termino municipal de San Vciente de la Barquera. Estudiar de manera detallada las posibles alternativas y obtener la solucion mas optima y viable tanto funcional como economicamente. Ilustrar el modo de realizacion de los parques eolicos offshore junto con otros proyectos analogos a modo de guia para futuros proyectos de este tipo. Impulsar la construccion de parques eolicos marinos en Espana, para cumplir el Plan de Energias Renovables 2005-2011 integrado en el marco comunitario e internacional, ya que la C.E.E. se ha propuesto que las energias renovables participen con un 20% en el consumo energetico total de la Union en el ano 2020. Motivar a la Comunidad Autonoma y al municipio a la apuesta por este modo de energia renovable, pionero a dia de hoy en Espana, como ejemplo para otras Comunidades Autonomas y otras Administraciones Publicas potenciando la implantacion de este nuevo modelo de tecnologia sensible con el medioambiente. Servir de soporte tecnico para la obtencion de la Autorizacion Administrativa y la Aprobacion del Proyecto de construccion y la puesta en marcha del parque eolico offshore de Oyambre. Por tanto, La energia eolica marina es considerada como uno de los recursos renovables que mas decididamente pueden contribuir a conseguir los objetivos anteriores en la Union Europea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En los últimos años se ha producido un aumento constante en la potencia fotovoltaica instalada a nivel mundial. Este crecimiento, acompañado de crecimientos similares en el resto de energías renovables, está motivado por la necesidad de dar respuesta a varios de los retos que planteados al sector energético: creciente preocupación por los efectos en el medioambiente de las emisiones de gases de efecto invernadero, entre los que cabe destacar el cambio climático (IPCC 2011); el inevitable agotamiento de algunas fuentes tradicionales de energía eléctrica, basadas en combustibles fósiles, que llevara aparejado en las próximas décadas un aumento en el coste asociado a producir energía eléctrica mediante estas fuentes como indican Bentley (2002), Gori (2007), Kjastard (2009), Owen (2010) y Hughes (2011), y la necesidad para algunos países de asegurar su independencia energética, factor especialmente crítico para los países europeos debido a su escasez en reservas naturales de combustibles fósiles. La energía solar fotovoltaica, al igual que el resto de energías renovables, proporciona energía eléctrica de manera limpia y segura y plantea soluciones a los problemas mencionados. Asimismo, las energías renovables también presentan beneficios sociales como la creación de empleo cualificado en actividades de ingeniería, fabricación, instalación y mantenimiento, así como en la investigación, desarrollo e innovación. Es por estos motivos que las energías renovables se han visto beneficiadas a lo largo de las últimas décadas de mecanismos favorables, subvenciones y primas a la producción, conducentes a su implantación y desarrollo. La Figura 1.1 muestra la evolución de la potencia total instalada a nivel mundial y su tasa de crecimiento del 2000 al 2012, de acuerdo con datos proporcionados por la Agencia Internacional de la Energía: IEA (2012a, 2013). Los datos incluidos en la Figura 1.1 solo incluyen a los países que pertenecen a la Agencia Internacional de la Energía: Alemania, Australia, Austria, Bélgica, Canadá, China, Corea, Dinamarca, España, Estados Unidos, Finlandia, Francia, Holanda, Israel, Italia, Japón, Malasia, México, Noruega, Portugal, Reino Unido, Suecia, Suiza y Turquía. La potencia instalada muestra un crecimiento de tipo exponencial, incrementándose cada año un 41,6% de media. A los 88,5 GWP de potencia fotovoltaica instalada en todos los países miembros de la IEA a finales de 2012 habría que añadir, siempre según la IEA (2013), 7 GWP adicionales repartidos en seis países que no pertenecen a este organismo: Republica Checa, Grecia, Bulgaria, Eslovaquia, Ucrania y Tailandia. Esta tendencia en la tasa de crecimiento se mantiene incluso en los últimos años del periodo cuando varios países han reducido los incentivos a las energías renovables. Como consecuencia de este crecimiento en algunos países la proporción de energía eléctrica total de origen fotovoltaico empieza a ser apreciable. Para los casos de España, Alemania e Italia, el porcentaje de energía eléctrica final producida sistemas fotovoltaicos conectados a la red (SFCR) fue, respectivamente, de 3,1% y 4,7% en 2012 y de 3,1% en 2011 en Italia. La potencia instalada, la energía producida y la demanda total en estos países desde el año 2006 al 2012, de acuerdo con REE (2012, 2012, 2013), BMU (2013) y TERNA (2013), se recoge en la Tabla 1.1. Para el caso de Italia se incluyen únicamente datos hasta el año 2011 por no encontrarse disponibles datos para 2012. A medida que el nivel de penetración de la energía solar fotovoltaica en los sistemas eléctricos aumenta la necesidad de que este tipo de energía se integre de manera efectiva en dichos sistemas aumenta. La integración efectiva de un generador en el sistema eléctrico requiere que su producción sea conocida de antemano para poder incluirlo en la planificación del sistema eléctrico con el objetivo de que la producción programada para los distintos generadores iguale a la demanda esperada. Esta planificación del sistema eléctrico se suele hacer a escala diaria. Asimismo, además de equilibrar la generación con la demanda esperada un generador eléctrico debe ser capaz de proporcionar servicios auxiliares al sistema eléctrico como compensación de desequilibrios entre generación y consumo, regulación de tensión o inyección de potencia reactiva, entre otros. Por ejemplo, los sistemas fotovoltaicos cuya potencia sea superior a 2 MWP deben contribuir en España desde el 2010 a garantizar la continuidad del suministro eléctrico frente a huecos de tensión (España, 2010), aplicándose a estos sistemas fotovoltaicos el mismo procedimiento de operación – PO 12.3, REE(2006) – que ya se aplicó en su día a los generadores eólicos (España, 2007). La energía fotovoltaica, junto a otras energías renovables como la eólica, ha sido considerada tradicionalmente una fuente de energía no regulable. En consecuencia, no ha sido tenida en cuenta por los operadores de los sistemas eléctricos como una fuente de energía fiable. Esta consideración de la fotovoltaica como fuente de energía no fiable se debe a su dependencia de las condiciones meteorológicas, radiación y temperatura, para producir energía. Si la producción de un sistema fotovoltaico pudiese conocerse con exactitud y con la suficiente antelación se facilitaría su integración en los sistemas eléctricos. Sin embargo, la mera predicción de cuanta energía producirá un sistema fotovoltaico, aun cuando esta predicción se haga sin error, puede no ser suficiente; la energía producida por el sistema fotovoltaico sigue estando limitada por las condiciones meteorológicas y no es posible regular esta producción de energía. Como ya se ha comentado, la capacidad por parte de un generador eléctrico de regular su potencia de salida, tanto anticipadamente como en tiempo real, es crucial a la hora de su integración en el sistema eléctrico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El enriquecimiento del conocimiento sobre la Irradiancia Solar (IS) a nivel de superficie terrestre, así como su predicción, cobran gran interés para las Energías Renovables (ER) - Energía Solar (ES)-, y para distintas aplicaciones industriales o ecológicas. En el ámbito de las ER, el uso óptimo de la ES implica contar con datos de la IS en superficie que ayuden tanto, en la selección de emplazamientos para instalaciones de ES, como en su etapa de diseño (dimensionar la producción) y, finalmente, en su explotación. En este último caso, la observación y la predicción es útil para el mercado energético, la planificación y gestión de la energía (generadoras y operadoras del sistema eléctrico), especialmente en los nuevos contextos de las redes inteligentes de transporte. A pesar de la importancia estratégica de contar con datos de la IS, especialmente los observados por sensores de IS en superficie (los que mejor captan esta variable), estos no siempre están disponibles para los lugares de interés ni con la resolución espacial y temporal deseada. Esta limitación se une a la necesidad de disponer de predicciones a corto plazo de la IS que ayuden a la planificación y gestión de la energía. Se ha indagado y caracterizado las Redes de Estaciones Meteorológicas (REM) existentes en España que publican en internet sus observaciones, focalizando en la IS. Se han identificado 24 REM (16 gubernamentales y 8 redes voluntarios) que aglutinan 3492 estaciones, convirtiéndose éstas en las fuentes de datos meteorológicos utilizados en la tesis. Se han investigado cinco técnicas de estimación espacial de la IS en intervalos de 15 minutos para el territorio peninsular (3 técnicas geoestadísticas, una determinística y el método HelioSat2 basado en imágenes satelitales) con distintas configuraciones espaciales. Cuando el área de estudio tiene una adecuada densidad de observaciones, el mejor método identificado para estimar la IS es el Kriging con Regresión usando variables auxiliares -una de ellas la IS estimada a partir de imágenes satelitales-. De este modo es posible estimar espacialmente la IS más allá de los 25 km identificados en la bibliografía. En caso contrario, se corrobora la idoneidad de utilizar estimaciones a partir de sensores remotos cuando la densidad de observaciones no es adecuada. Se ha experimentado con el modelado de Redes Neuronales Artificiales (RNA) para la predicción a corto plazo de la IS utilizando observaciones próximas (componentes espaciales) en sus entradas y, los resultados son prometedores. Así los niveles de errores disminuyen bajo las siguientes condiciones: (1) cuando el horizonte temporal de predicción es inferior o igual a 3 horas, las estaciones vecinas que se incluyen en el modelo deben encentrarse a una distancia máxima aproximada de 55 km. Esto permite concluir que las RNA son capaces de aprender cómo afectan las condiciones meteorológicas vecinas a la predicción de la IS. ABSTRACT ABSTRACT The enrichment of knowledge about the Solar Irradiance (SI) at Earth's surface and its prediction, have a high interest for Renewable Energy (RE) - Solar Energy (SE) - and for various industrial and environmental applications. In the field of the RE, the optimal use of the SE involves having SI surface to help in the selection of sites for facilities ES, in the design stage (sizing energy production), and finally on their production. In the latter case, the observation and prediction is useful for the market, planning and management of the energy (generators and electrical system operators), especially in new contexts of smart transport networks (smartgrid). Despite the strategic importance of SI data, especially those observed by sensors of SI at surface (the ones that best measure this environmental variable), these are not always available to the sights and the spatial and temporal resolution desired. This limitation is bound to the need for short-term predictions of the SI to help planning and energy management. It has been investigated and characterized existing Networks of Weather Stations (NWS) in Spain that share its observations online, focusing on SI. 24 NWS have been identified (16 government and 8 volunteer networks) that implies 3492 stations, turning it into the sources of meteorological data used in the thesis. We have investigated five technical of spatial estimation of SI in 15 minutes to the mainland (3 geostatistical techniques and HelioSat2 a deterministic method based on satellite images) with different spatial configurations. When the study area has an adequate density of observations we identified the best method to estimate the SI is the regression kriging with auxiliary variables (one of them is the SI estimated from satellite images. Thus it is possible to spatially estimate the SI beyond the 25 km identified in the literature. Otherwise, when the density of observations is inadequate the appropriateness is using the estimates values from remote sensing. It has been experimented with Artificial Neural Networks (ANN) modeling for predicting the short-term future of the SI using observations from neighbor’s weather stations (spatial components) in their inputs, and the results are promising. The error levels decrease under the following conditions: (1) when the prediction horizon is less or equal than 3 hours the best models are the ones that include data from the neighboring stations (at a maximum distance of 55 km). It is concluded that the ANN is able to learn how weather conditions affect neighboring prediction of IS at such Spatio-temporal horizons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Todos los procesos industriales actualmente tienen como objetivo la eficiencia en el uso de los recursos, principalmente la energía y el agua, así como el tratamiento y la eliminación de los residuos, para que puedan almacenarse de forma segura. Este proyecto surge de la necesidad de una gestión alternativa de residuos y está aplicado a los de una fundición de sulfuros polimetálicos de la faja pirítica española, dada reactivación de la minería de la zona. Se estudia la viabilidad técnico-económica de distintas alternativas de tratamiento y se justifica una de las soluciones más adecuadas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Después de analizar la situación energética actual y las distintas formas de almacenar la energía, sobre todo la proveniente de energías renovables, añadido a las preocupaciones sobre el cambio climático global, la degradación medioambiental resultante del uso de los combustibles fósiles como fuente primaria de energía, junto con las inquietudes sobre la seguridad en el suministro energético, han llevado a muchos analistas a proponer al hidrógeno como portador universal de energía para el futuro. El uso del hidrógeno como vector energético permite el desarrollo de un amplio número de tecnologías. En concreto, las pilas de combustible alimentadas con hidrógeno pueden alcanzar eficiencias elevadas y presentan una gran variedad de posibles aplicaciones, tanto móviles como estacionarias. En el caso de que las líneas de desarrollo actuales lleguen a buen término, el hidrógeno y las pilas de combustible podrán contribuir de forma sustancial a alcanzar los objetivos clave de las políticas energéticas (seguridad de suministro, reducción de emisiones de CO2), especialmente en el sector transporte. Los resultados alcanzados en los últimos años en los programas de investigación, desarrollo y demostración han incrementado claramente el interés internacional sobre estas tecnologías, de las que se piensa que tienen el potencial de crear un cambio de paradigma energético, tanto en las aplicaciones de transporte como en las de generación distribuida de potencia. A largo plazo, la incorporación del hidrógeno como nuevo vector energético, ofrece un escenario en el que se podrá producir hidrógeno a partir de agua, con electricidad y calor de origen renovable, y será posible su utilización para atender a todo tipo de demandas, tanto las convencionales de la industria, en las que el hidrógeno juega un papel de reactivo en procesos diversos, como las energéticas en las que jugaría su nuevo papel de portador de energía. Las únicas emisiones que llevaría asociada la utilización del hidrógeno renovable serían óxidos de nitrógeno que se producirían en procesos de combustión. Sin embargo, su uso en pilas de combustible llevaría a emisiones nulas. Si la fuente del hidrógeno es el gas natural o el carbón, entonces será esencial la captura y almacenamiento del CO2 para lograr ahorros en emisiones, pero, en cualquier caso, los vehículos propulsados por pilas de combustible alimentadas con hidrógeno siempre reducirán las emisiones locales, dado que en el uso final el único efluente es vapor de agua. La visión de este sistema económico-energético del H2, se basa en la expectativa de que el hidrógeno pueda producirse a partir de recursos domésticos, de forma económica y medioambientalmente aceptable y en que las tecnologías de uso final del hidrógeno (pilas de combustible) ganen una cuota de mercado significativa. Los que en el mundo abogan por el hidrógeno indican que, si se alcanzan estas expectativas, una «economía del hidrógeno» beneficiará al mundo proporcionando una mayor seguridad energética porque se diversificarán las fuentes de energía, y una mayor calidad medioambiental porque se reducirán significativamente las emisiones locales y globales

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hoy en día, la gran dependencia de los países industrializados de los combustibles fósiles para cubrir su demanda energética genera anualmente una enorme cantidad de emisiones de gases de efecto invernadero (GEI), provocando unos efectos negativos muy serios para el ser humano y su entorno. Al mismo tiempo, 1400 millones de personas, principalmente habitantes de países en desarrollo, viven sin acceso a la energía moderna, obstaculizando su desarrollo social y económico, y constituyendo una barrera importante para el logro de los Objetivos de Desarrollo del Milenio. Por eso, la energía es uno de los retos más importantes y urgentes a los que se enfrenta el mundo en la actualidad. Por cuestiones de equidad, es necesario extender el acceso a la energía moderna a las poblaciones que carecen de él, pero, si las tecnologías adoptadas para acelerar el acceso a la energía tienen un importante impacto ambiental, se agravarán los problemas ambientales y, en particular, aquellos relacionados con el cambio climático. Las iniciativas basadas en las energías renovables y la eficiencia energética se presentan como una solución con un importante potencial para resolver este desafío. Por un lado, estas tecnologías pueden sustituir a las mayoritariamente utilizadas en los países industrializados, basadas en recursos no renovables y contaminantes, ayudando así a reducir las emisiones de GEI. A su vez, pueden ser la base en la que se fundamenten los modelos energéticos de los países en desarrollo para extender el acceso a la energía a sus poblaciones. Poco a poco, los países llamados desarrollados y aquéllos emergentes han ido incorporando estas tecnologías alternativas dentro de sus matrices energéticas, y se espera que se produzca un aumento de su presencia en los próximos años. Sin embargo, en los países en desarrollo, la introducción de las energías renovables y eficiencia energética ha sido tradicionalmente más complicada. Al mismo tiempo, son cada vez más los estudios y experiencias que han concluido que una energía sostenible y accesible es necesaria para reducir la pobreza, el hambre y la malnutrición, mejorar la salud, incrementar los niveles de alfabetización y educación, y mejorar significativamente la vida de las mujeres y los niños. Por eso, las iniciativas basadas en energías renovables y eficiencia energética cada vez van teniendo con más frecuencia como destinatarios los países más empobrecidos. Gracias a ellas, además de contar con acceso a una energía sostenible y respetuosa con el medio ambiente, las poblaciones gozan de acceso a otros servicios como procesar alimentos y conservarlos por mayores períodos de tiempo, bombear agua, planificar una industria, dar servicio a centros sanitarios, transportar bienes y personas ,tener acceso a medios de comunicación y entretenimiento, etc. Sin embargo, aunque son muchas las mejoras que los proyectos energéticos pueden producir en las condiciones de vida de las comunidades receptoras, la experiencia muestra que existe un número importante de proyectos que no están contribuyendo a generar desarrollo como su potencial hacía esperar. Entre las diferentes razones que pueden explicar este “fracaso”, se encuentra el hecho de que no se han incluido todos los potenciales impactos en el desarrollo humano local desde las etapas de diseño del proyecto, y tampoco se han monitoreado su evolución. Para dar respuesta a esta situación, el presente trabajo desarrolla una metodología flexible, basada en un sistema de principios, criterios e indicadores, que permite diseñar y posteriormente evaluar los impactos que un determinado proyecto de energías renovables y eficiencia energética tiene sobre las condiciones de vida de las comunidades en las que se implementa, de forma que estos impactos puedan ser alcanzados. El trabajo recoge también una serie de casos de estudio en los que se ha aplicado la metodología: ocho proyectos vinculados a energías renovables y/o eficiencia energética situados en Senegal, basados tecnologías y escalas diferentes, implementados por distintos tipos de organismos y enmarcados en contextos diferentes. Esto es una prueba de la capacidad de adaptación y la flexibilidad con la que ha sido diseñada la metodología. La metodología se basa en una batería de indicadores, que contemplan todos los potenciales impactos que los proyectos de Energías Renovables y Eficiencia Energética pueden tener sobre las condiciones de vida de las comunidades donde se implementan. Los indicadores están agrupados por criterios, y éstos, a su vez, en cuatro principios (o dimensiones), los cuales marcan el objetivo y el alcance del modelo: Económico, Social, Ambiental y de Empoderamiento. La evaluación realizada en los ocho proyectos en Senegal ha permitido identificar factores que son determinantes para que los proyectos produzcan o no todas las potenciales contribuciones al desarrollo humano de las poblaciones receptoras. Algunos de los factores de éxito detectados han sido la elección de soluciones energéticas que utilicen tecnologías sencillas, que facilitan la apropiación por parte de la población receptora y las tareas de mantenimiento y la implicación de actores provenientes de diferentes sectores (público, privado y tercer sector), que trabajen en colaboración desde el inicio. Entre los factores de fracaso, se encuentra el hecho de que los procesos de participación y consulta no se han realizado de una forma adecuada, haciendo que los proyectos no respondan a las necesidades de la población local y no se tengan en cuenta las situaciones especificas de algunos grupos vulnerables, como las mujeres. Además, a menudo no se ha producido una verdadera transferencia de tecnología, por la escasa apropiación por parte de la población receptora y tampoco se han hecho estudios de las capacidades y voluntades de pago por los nuevos servicios energéticos, afectando muy negativamente a la sostenibilidad económica de las instalaciones. La metodología de evaluación y los casos de estudio presentados en el trabajo pretenden contribuir a mejorar la contribución de los proyectos de EERR y EE al desarrollo humano, y pueden ser un recurso útil para empresas, ONG y administraciones públicas involucradas en el ámbito de la Energía y en los países en desarrollo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este Proyecto estudia la implantación de una central termoeléctrica para la generación de energía en la provincia de Orense. Se trata de una instalación que hace uso de biomasa forestal con el fin de producir energía eléctrica renovable de una manera responsable. En primer lugar se estudia en profundidad la disponibilidad de la biomasa presente en la región que dará lugar al emplazamiento de la instalación, en pos de una posterior toma de decisión acerca del correcto dimensionamiento de la planta, así como la ubicación óptima de la misma. Se ha logrado dar una alternativa a la dependencia energética a partir de una energía renovable limpia, como la cadena integrada de producción eléctrica. Considerando con rigor tanto las políticas de globalización regionales como internacionales orientadas a lograr un desarrollo sostenible y a la lucha contra el cambio climático, como la cadena integrada de producción eléctrica. Una vez puestos en situación, se analiza las diferentes técnicas utilizadas para el aprovechamiento energético con la biomasa disponible. Se trata de encontrar la mejor alternativa capaz de optimizar los recursos energéticos de la zona para la generación de energía eléctrica. Abstract This project is based on the study of a power plant located in the province of Ourense and its fundamental target is aimed to the generation of electricity. The importance of this plant is its commitment within renewable resources that enhance the use of forest biomass in order to produce electrical power in a responsible way. In the first place, it is necessary to deeply investigate the characteristics of the available biomass present in the place of interest, which will define the size and location of the power plant. This project gives an alternative to the energetic dependence from a renewable point of view, considering rigorously globalized politics intended for a sustainable energetic progress within the introduction of ambitious measures against climate change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Es un hecho que desde hace unos años, la industria de las energías renovables en el mar ha experimentado un crecimiento notable, sobre todo el sector de la energía eólica. Por el contrario, la industria de los cables submarinos de telecomunicaciones está en una depresión temporal. Esto hace que haya recursos de tendido de cables ociosos y en cambio se necesitan para la instalación de cables de potencia. El objeto del presente estudio pretende analizar las diferencias y similitudes de las industrias de las energías renovables y telecomunicaciones submarinas para establecer qué grado de aplicabilidad tienen los buques cableros de telecomunicaciones en la industria de las energías renovables. Para ello, se hace un somero repaso a la industria para establecer qué condiciones deben cumplir los buques cableros como herramientas, se determinan las características necesarias de los buques, así como su equipamiento principal, y se presenta un caso real de adaptación.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El tema sobre el que trata este proyecto es un estudio para la instalación de un suelo radiante y unas placas solares para producir A.C.S. en una vivienda unifamiliar situada en Ciudad Rodrigo, en la provincia de Salamanca. Debido a la nueva normativa del CTE, se debe instalar una forma de energía alternativa en las edificaciones de construcción reciente, eligiendo para este caso específico los paneles solares térmicos. Se va a desarrollar el estudio de las instalaciones del suelo radiante y de los paneles solares., calculando la carga térmica necesaria de la vivienda, la demanda de A.C.S. y la energía necesaria para obtenerla. Además se calculará la energía obtenida por las placas y el ahorro aportado por estas. Se valorarán, los diferentes costes de ambas instalaciones para elaborar un presupuesto aproximado, teniendo en cuenta el coste de los materiales empleados. También, se obtendrá el ahorro obtenido con los paneles solares y el tiempo necesario para amortizar la inversión.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sistemas fotovoltaicos autónomos, es decir, sistemas que carecen de conexión a la red eléctrica, presentan una gran utilidad para poder llevar a cabo la electrificación de lugares remotos donde no hay medios de acceder a la energía eléctrica. El continuo avance en el número de sistemas instalados por todo el mundo y su continua difusión técnica no significa que la implantación de estas instalaciones no presente ninguna problemática. A excepción del panel fotovoltaico que presenta una elevada fiabilidad, el resto de elementos que forman el sistema presentan numerosos problemas y dependencias, por tanto el estudio de las fiabilidades de estos elementos es obligado. En este proyecto se pretende analizar y estudiar detalladamente la fiabilidad de los sistemas fotovoltaicos aislados. Primeramente, el presente documento ofrece una introducción sobre la situación mundial de las energías renovables, así como una explicación detallada de la energía fotovoltaica. Esto incluye una explicación técnica de los diferentes elementos que forman el sistema energético (módulo fotovoltaico, batería, regulador de carga, inversor, cargas, cableado y conectores). Por otro lado, se hará un estudio teórico del concepto de fiabilidad, con sus definiciones y parámetros más importantes. Llegados a este punto, el proyecto aplica la teoría de fiabilidad comentada a los sistemas fotovoltaicos autónomos, profundizando en la fiabilidad de cada elemento del sistema así como evaluando el conjunto. Por último, se muestran datos reales de fiabilidad de programas de electrificación, demostrando la variedad de resultados sujetos a los distintos emplazamientos de las instalaciones y por tanto distintas condiciones de trabajo. Se destaca de esta forma la importancia de la fiabilidad de los sistemas fotovoltaicos autónomos, pues normalmente este tipo de instalaciones se localizan en emplazamientos remotos, sin personal cualificado de mantenimiento cercano ni grandes recursos logísticos y económicos. También se resalta en el trabajo la dependencia de la radiación solar y el perfil de consumo a la hora de dimensionar el sistema. Abstract Stand-alone photovoltaic systems which are not connected to the utility grid. These systems are very useful to carry out the electrification of remote locations where is no easy to access to electricity. The number increased of systems installed worldwide and their continued dissemination technique does not mean that these systems doesn´t fails. With the exception of the photovoltaic panel with a high reliability, the remaining elements of the system can to have some problems and therefore the study of the reliabilities of these elements is required. This project tries to analyze and study the detaila of the reliability of standalone PV systems. On the one hand, this paper provides an overview of the global situation of renewable energy, as well as a detailed explanation of photovoltaics. This includes a technical detail of the different elements of the energy system (PV module, battery, charge controller, inverter, loads, wiring and connectors). In addition, there will be a theoricall study of the concept of reliability, with the most important definitions and key parameters. On the other hand, the project applies the reliability concepts discussed to the stand-alone photovoltaic systems, analyzing the reliability of each element of the system and analyzing the entire system. Finally, this document shows the most important data about reliability of some electrification programs, checking the variety of results subject to different places and different conditions. As a conclussion, the importance of reliability of stand-alone photovoltaic systems because usually these are located in remote locations, without qualified maintenance and financial resources.These systems operate under dependence of solar radiation and the consumption profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El proyecto es un Sistema de Información Geográfica y Visor web centrado en las energías renovables solar y eólica, contiene funcionalidad dirigida a facilitar elacceso de los ciudadanos y de las empresas del sector a la información de estas dos energías. Incorpora una herramienta de edición que pretende tener una base de datos actualizada de los parques solares y eólicos de España. Otra orientada al entorno urbano que permite saber la electricidad aproximada que se generaría en la cubierta de un edificio de Vitoria en función del panel solar que se instale en dicha cubierta. También se ha realizado un análisis espacial para encontrar los lugares óptimos para la instalación de paneles solares y eólicos en el País Vasco, se han publicado las capas resultado en el visor para que puedan acceder a ellas cualquier sociedad o empresa que le interese conocer este tipo de información. Para estos análisis se han tenido en cuenta estudios de diferentes universidades e informes de organizaciones como Greenpeace. No obstante, no deja de ser una propuesta objeto de posibles mejoras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Es en el campo de los recursos naturales y su aplicación a la industria, el entorno donde se desarrolla esta Tesis. El objetivo de la misma es demostrar cómo la minería del hierro puede resultar una actividad sostenible, logrando continuar de esta manera la estrecha relación de siempre entre las necesidades del hombre y la pervivencia de los recursos naturales. Es en la minería del hierro donde hace mayor énfasis este trabajo, dando lugar a un nuevo Indicador Sostenible que intenta evaluar las explotaciones de mineral de hierro desde una visión sostenible, empleando el consumo energético y las emisiones de CO2 como principales herramientas. Como se observa en el día a día, el tema de la sostenibilidad es de plena actualidad, lográndose en este trabajo implicar, tanto a la eficiencia energética, como al control de emisiones de gases efecto invernadero; ambas herramientas cobran más importancia cada día que pasa. La Tesis se desarrolla en 5 capítulos, aparte de su bibliografía correspondiente. En el primer capítulo se introduce el sentido de la sostenibilidad, desde sus inicios conceptuales, hasta sus actuales clasificaciones y definiciones empleadas; todo ello desde el punto de vista de los recursos naturales, y más habitualmente desde la minería. Resulta llamativo el contraste de opiniones, en lo que se ha dado a llamar la paradoja de la minería sostenible, quedando tras su lectura, la posición de la minería en una situación, si no ventajosa, si de equilibrio en importancia entre las necesidades a cubrir y el agotamiento de recursos. El segundo capítulo nos muestra el entorno donde se va a conducir la Tesis. El marco que engloba este trabajo se extiende desde la extracción del mineral de hierro (minería), su tratamiento y concentración (mineralurgia), su venta a los hornos altos (mercados) hasta su posterior fabricación en acero terminado (siderurgia). En este capítulo se presentan los principales actores que entrarán en el sector de la minería del hierro (productores y fabricantes) incluyendo una serie de datos estadísticos de gran interés para el desarrollo de la Tesis. El tercer capítulo se refiere al proceso completo que precisa la actividad sobre la que se va a evaluar la sostenibilidad. Es donde se definen, paso a paso, y obteniendo todos los datos de consumos energéticos y emisiones de CO2, las diferentes etapas por las que pasa el mineral de hierro, hasta encontrarse laminado en la acería. Es aquí donde se analizan los diversos tipos de yacimientos de hierro dispersos por el mundo y el mineral extraído, de manera que las propiedades aprendidas se puedan emplear más adelante en un indicador, y que así diferencie la sostenibilidad en función de los orígenes motivo de las necesidades energéticas para su transformación. El capítulo 4 consta de dos bloques: el uso de las herramientas de medida de la sostenibilidad, a día de hoy en el mundo industrial, y de una manera pormenorizada, el consumo energético y sus emisiones medioambientales como herramienta de gestión ambiental para la minería del hierro. Esta herramienta resultará básica para el cálculo del indicador buscado para la medida de la sostenibilidad. El capítulo 5 constituye el núcleo de la tesis, y supone el desarrollo del indicador, la metodología de uso y las conclusiones obtenidas. A través de varios ejemplos se logra entender la aplicación del indicador, dando lugar a una clasificación sostenible sencilla y práctica, situando en orden las diferentes explotaciones en función de un nivel de sostenibilidad determinado. Este último capítulo da origen al Indicador Sostenible Energético buscado, mostrándose en todo su esplendor y descubriendo cómo la relación ponderada entre el consumo energético y sus emisiones de CO2 permite, a través de una valoración, mostrar todos los parámetros de relevancia para el mineral de hierro y su posterior transformación en acero. Esa cifra obtenida por el indicador, clasificará la explotación teniendo en cuenta, el tipo de yacimiento, características del mineral (especie mineralógica, tipo de mineral, ley del mineral en hierro, tipo de ganga, características físicas como dureza o tamaño de grano, susceptibilidad magnética, etc.), situación geográfica, infraestructuras, etc. Sin profundizar en la siderurgia, por lo menos sí incluir los principales parámetros (relacionados siempre desde el mineral) que pudieran tener influencia en la disminución de energía requerida (y sus emisiones de CO2 relacionadas): la reducibilidad, el contenido en hierro, y mencionar la influencia del SiO2. Se completa la Tesis con las referencias bibliográficas y documentales, así como con una bibliografía general. ABSTRACT This Thesis is set in a context of natural resources and applied science. The aim of this document is to prove that iron mining is a sustainable activity, so the ancient relationship between men and natural resources will continue. Iron mining is the main subject of this work, so a new sustainable indicator is created in order to evaluate the iron mining from a sustainable point of view. The main tools applied are energy consumption and CO2 emissions. In this research document two relevant issues are involved: energy efficiency and GHGs control; both tools gain significance by the day. This thesis develops along 5 chapters and its bibliography. The first chapter refers to the concept of sustainability, from the beginning to the current definitions and classifications; all this information is focused from the natural resources point of view, especially mining. The contrast of opinion is remarkable, which has been called the “paradox of sustainable mining”; however this chapter concludes that taking into account the less bright side of the mining its activity maintains an important balance between necessities to cover, available resources and environment. The second chapter sets out where this Thesis has been conducted. The frame of this work lies between iron mining, ore processing, the market and the latter steel fabrication (steelmaking). This chapter shows the iron mining key stakeholders, supported with statistical data. The third chapter refers to the whole process definition. From the iron mineral to the rolled steel, all data related with energy consumption and CO2 emissions are considered step by step. Different iron deposits widespread all over the world are analyzed now, as well as the exploited iron mineral in order to apply the lessons learned to create a new sustainability tool. Then, our sustainability studies will consider the influence of this in the energy necessities when iron is transformed. Chapter four is divided in the currently applied sustainability measurement tools, and focusing on energy consumption and CO2 emissions linked to the iron mining process. This tool is essential to calculate the required indicator that reflects the sustainability. Chapter five is the Thesis’ core: it is where the new sustainable indicator is developed, the methodology stated and the final conclusions obtained. Through several examples the indicator application is explained, and a practical and simple sustainable classification will show the ranking of every exploitation. This last chapter develops the sustainable tool and discovers how the weighted relation between energy consumption and CO2 emissions allows understanding all the relevant parameters in the iron mineral transformation. The number calculated will be used to classify the mineral exploitation, taking into account the deposit typology, mineral characteristics (mineralogy, type of mineral, iron percentage, physical properties as hardness or grain size, magnetic susceptibility, etc.), geographic situation, infrastructures, etc. Although steelmaking is not studied in depth, main parameters (from the mineral side) which can operate in the energy decrease (and CO2 emissions in parallel) are referred to: reducibility, iron content and SiO2 influence. The bibliography used is included at the end of this paper.