16 resultados para OWL MONKEYS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformance of semantic technologies has to be systematically evaluated to measure and verify the real adherence of these technologies to the Semantic Web standards. Currente valuations of semantic technology conformance are not exhaustive enough and do not directly cover user requirements and use scenarios, which raises the need for a simple, extensible and parameterizable method to generate test data for such evaluations. To address this need, this paper presents a keyword-driven approach for generating ontology language conformance test data that can be used to evaluate semantic technologies, details the definition of a test suite for evaluating OWL DL conformance using this approach,and describes the use and extension of this test suite during the evaluation of some tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the computational complexity of the logic underlying the standard OWL 2 for the Web Ontology Language (OWL) appears discouraging for real applications, several contributions have shown that reasoning with OWL ontologies is feasible in practice. It turns out that reasoning in practice is often far less complex than is suggested by the established theoretical complexity bound, which reflects the worstcase scenario. State-of-the reasoners like FACT++, HERMIT, PELLET and RACER have demonstrated that, even with fairly expressive fragments of OWL 2, acceptable performances can be achieved. However, it is still not well understood why reasoning is feasible in practice and it is rather unclear how to study this problem. In this paper, we suggest first steps that in our opinion could lead to a better understanding of practical complexity. We also provide and discuss some initial empirical results with HERMIT on prominent ontologies

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web 1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs. These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools. Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate. However, linguistic annotation tools have still some limitations, which can be summarised as follows: 1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.). 2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts. 3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc. A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved. In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool. Therefore, it would be quite useful to find a way to (i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools; (ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate. Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned. Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section. 2. GOALS OF THE PRESENT WORK As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based triples, as in the usual Semantic Web languages (namely RDF(S) and OWL), in order for the model to be considered suitable for the Semantic Web. Besides, to be useful for the Semantic Web, this model should provide a way to automate the annotation of web pages. As for the present work, this requirement involved reusing the linguistic annotation tools purchased by the OEG research group (http://www.oeg-upm.net), but solving beforehand (or, at least, minimising) some of their limitations. Therefore, this model had to minimise these limitations by means of the integration of several linguistic annotation tools into a common architecture. Since this integration required the interoperation of tools and their annotations, ontologies were proposed as the main technological component to make them effectively interoperate. From the very beginning, it seemed that the formalisation of the elements and the knowledge underlying linguistic annotations within an appropriate set of ontologies would be a great step forward towards the formulation of such a model (henceforth referred to as OntoTag). Obviously, first, to combine the results of the linguistic annotation tools that operated at the same level, their annotation schemas had to be unified (or, preferably, standardised) in advance. This entailed the unification (id. standardisation) of their tags (both their representation and their meaning), and their format or syntax. Second, to merge the results of the linguistic annotation tools operating at different levels, their respective annotation schemas had to be (a) made interoperable and (b) integrated. And third, in order for the resulting annotations to suit the Semantic Web, they had to be specified by means of an ontology-based vocabulary, and structured by means of ontology-based triples, as hinted above. Therefore, a new annotation scheme had to be devised, based both on ontologies and on this type of triples, which allowed for the combination and the integration of the annotations of any set of linguistic annotation tools. This annotation scheme was considered a fundamental part of the model proposed here, and its development was, accordingly, another major objective of the present work. All these goals, aims and objectives could be re-stated more clearly as follows: Goal 1: Development of a set of ontologies for the formalisation of the linguistic knowledge relating linguistic annotation. Sub-goal 1.1: Ontological formalisation of the EAGLES (1996a; 1996b) de facto standards for morphosyntactic and syntactic annotation, in a way that helps respect the triple structure recommended for annotations in these works (which is isomorphic to the triple structures used in the context of the Semantic Web). Sub-goal 1.2: Incorporation into this preliminary ontological formalisation of other existing standards and standard proposals relating the levels mentioned above, such as those currently under development within ISO/TC 37 (the ISO Technical Committee dealing with Terminology, which deals also with linguistic resources and annotations). Sub-goal 1.3: Generalisation and extension of the recommendations in EAGLES (1996a; 1996b) and ISO/TC 37 to the semantic level, for which no ISO/TC 37 standards have been developed yet. Sub-goal 1.4: Ontological formalisation of the generalisations and/or extensions obtained in the previous sub-goal as generalisations and/or extensions of the corresponding ontology (or ontologies). Sub-goal 1.5: Ontological formalisation of the knowledge required to link, combine and unite the knowledge represented in the previously developed ontology (or ontologies). Goal 2: Development of OntoTag’s annotation scheme, a standard-based abstract scheme for the hybrid (linguistically-motivated and ontological-based) annotation of texts. Sub-goal 2.1: Development of the standard-based morphosyntactic annotation level of OntoTag’s scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996a) and also the recommendations included in the ISO/MAF (2008) standard draft. Sub-goal 2.2: Development of the standard-based syntactic annotation level of the hybrid abstract scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996b) and the ISO/SynAF (2010) standard draft. Sub-goal 2.3: Development of the standard-based semantic annotation level of OntoTag’s (abstract) scheme. Sub-goal 2.4: Development of the mechanisms for a convenient integration of the three annotation levels already mentioned. These mechanisms should take into account the recommendations included in the ISO/LAF (2009) standard draft. Goal 3: Design of OntoTag’s (abstract) annotation architecture, an abstract architecture for the hybrid (semantic) annotation of texts (i) that facilitates the integration and interoperation of different linguistic annotation tools, and (ii) whose results comply with OntoTag’s annotation scheme. Sub-goal 3.1: Specification of the decanting processes that allow for the classification and separation, according to their corresponding levels, of the results of the linguistic tools annotating at several different levels. Sub-goal 3.2: Specification of the standardisation processes that allow (a) complying with the standardisation requirements of OntoTag’s annotation scheme, as well as (b) combining the results of those linguistic tools that share some level of annotation. Sub-goal 3.3: Specification of the merging processes that allow for the combination of the output annotations and the interoperation of those linguistic tools that share some level of annotation. Sub-goal 3.4: Specification of the merge processes that allow for the integration of the results and the interoperation of those tools performing their annotations at different levels. Goal 4: Generation of OntoTagger’s schema, a concrete instance of OntoTag’s abstract scheme for a concrete set of linguistic annotations. These linguistic annotations result from the tools and the resources available in the research group, namely • Bitext’s DataLexica (http://www.bitext.com/EN/datalexica.asp), • LACELL’s (POS) tagger (http://www.um.es/grupos/grupo-lacell/quees.php), • Connexor’s FDG (http://www.connexor.eu/technology/machinese/glossary/fdg/), and • EuroWordNet (Vossen et al., 1998). This schema should help evaluate OntoTag’s underlying hypotheses, stated below. Consequently, it should implement, at least, those levels of the abstract scheme dealing with the annotations of the set of tools considered in this implementation. This includes the morphosyntactic, the syntactic and the semantic levels. Goal 5: Implementation of OntoTagger’s configuration, a concrete instance of OntoTag’s abstract architecture for this set of linguistic tools and annotations. This configuration (1) had to use the schema generated in the previous goal; and (2) should help support or refute the hypotheses of this work as well (see the next section). Sub-goal 5.1: Implementation of the decanting processes that facilitate the classification and separation of the results of those linguistic resources that provide annotations at several different levels (on the one hand, LACELL’s tagger operates at the morphosyntactic level and, minimally, also at the semantic level; on the other hand, FDG operates at the morphosyntactic and the syntactic levels and, minimally, at the semantic level as well). Sub-goal 5.2: Implementation of the standardisation processes that allow (i) specifying the results of those linguistic tools that share some level of annotation according to the requirements of OntoTagger’s schema, as well as (ii) combining these shared level results. In particular, all the tools selected perform morphosyntactic annotations and they had to be conveniently combined by means of these processes. Sub-goal 5.3: Implementation of the merging processes that allow for the combination (and possibly the improvement) of the annotations and the interoperation of the tools that share some level of annotation (in particular, those relating the morphosyntactic level, as in the previous sub-goal). Sub-goal 5.4: Implementation of the merging processes that allow for the integration of the different standardised and combined annotations aforementioned, relating all the levels considered. Sub-goal 5.5: Improvement of the semantic level of this configuration by adding a named entity recognition, (sub-)classification and annotation subsystem, which also uses the named entities annotated to populate a domain ontology, in order to provide a concrete application of the present work in the two areas involved (the Semantic Web and Corpus Linguistics). 3. MAIN RESULTS: ASSESSMENT OF ONTOTAG’S UNDERLYING HYPOTHESES The model developed in the present thesis tries to shed some light on (i) whether linguistic annotation tools can effectively interoperate; (ii) whether their results can be combined and integrated; and, if they can, (iii) how they can, respectively, interoperate and be combined and integrated. Accordingly, several hypotheses had to be supported (or rejected) by the development of the OntoTag model and OntoTagger (its implementation). The hypotheses underlying OntoTag are surveyed below. Only one of the hypotheses (H.6) was rejected; the other five could be confirmed. H.1 The annotations of different levels (or layers) can be integrated into a sort of overall, comprehensive, multilayer and multilevel annotation, so that their elements can complement and refer to each other. • CONFIRMED by the development of: o OntoTag’s annotation scheme, o OntoTag’s annotation architecture, o OntoTagger’s (XML, RDF, OWL) annotation schemas, o OntoTagger’s configuration. H.2 Tool-dependent annotations can be mapped onto a sort of tool-independent annotations and, thus, can be standardised. • CONFIRMED by means of the standardisation phase incorporated into OntoTag and OntoTagger for the annotations yielded by the tools. H.3 Standardisation should ease: H.3.1: The interoperation of linguistic tools. H.3.2: The comparison, combination (at the same level and layer) and integration (at different levels or layers) of annotations. • H.3 was CONFIRMED by means of the development of OntoTagger’s ontology-based configuration: o Interoperation, comparison, combination and integration of the annotations of three different linguistic tools (Connexor’s FDG, Bitext’s DataLexica and LACELL’s tagger); o Integration of EuroWordNet-based, domain-ontology-based and named entity annotations at the semantic level. o Integration of morphosyntactic, syntactic and semantic annotations. H.4 Ontologies and Semantic Web technologies (can) play a crucial role in the standardisation of linguistic annotations, by providing consensual vocabularies and standardised formats for annotation (e.g., RDF triples). • CONFIRMED by means of the development of OntoTagger’s RDF-triple-based annotation schemas. H.5 The rate of errors introduced by a linguistic tool at a given level, when annotating, can be reduced automatically by contrasting and combining its results with the ones coming from other tools, operating at the same level. However, these other tools might be built following a different technological (stochastic vs. rule-based, for example) or theoretical (dependency vs. HPS-grammar-based, for instance) approach. • CONFIRMED by the results yielded by the evaluation of OntoTagger. H.6 Each linguistic level can be managed and annotated independently. • REJECTED: OntoTagger’s experiments and the dependencies observed among the morphosyntactic annotations, and between them and the syntactic annotations. In fact, Hypothesis H.6 was already rejected when OntoTag’s ontologies were developed. We observed then that several linguistic units stand on an interface between levels, belonging thereby to both of them (such as morphosyntactic units, which belong to both the morphological level and the syntactic level). Therefore, the annotations of these levels overlap and cannot be handled independently when merged into a unique multileveled annotation. 4. OTHER MAIN RESULTS AND CONTRIBUTIONS First, interoperability is a hot topic for both the linguistic annotation community and the whole Computer Science field. The specification (and implementation) of OntoTag’s architecture for the combination and integration of linguistic (annotation) tools and annotations by means of ontologies shows a way to make these different linguistic annotation tools and annotations interoperate in practice. Second, as mentioned above, the elements involved in linguistic annotation were formalised in a set (or network) of ontologies (OntoTag’s linguistic ontologies). • On the one hand, OntoTag’s network of ontologies consists of − The Linguistic Unit Ontology (LUO), which includes a mostly hierarchical formalisation of the different types of linguistic elements (i.e., units) identifiable in a written text; − The Linguistic Attribute Ontology (LAO), which includes also a mostly hierarchical formalisation of the different types of features that characterise the linguistic units included in the LUO; − The Linguistic Value Ontology (LVO), which includes the corresponding formalisation of the different values that the attributes in the LAO can take; − The OIO (OntoTag’s Integration Ontology), which  Includes the knowledge required to link, combine and unite the knowledge represented in the LUO, the LAO and the LVO;  Can be viewed as a knowledge representation ontology that describes the most elementary vocabulary used in the area of annotation. • On the other hand, OntoTag’s ontologies incorporate the knowledge included in the different standards and recommendations for linguistic annotation released so far, such as those developed within the EAGLES and the SIMPLE European projects or by the ISO/TC 37 committee: − As far as morphosyntactic annotations are concerned, OntoTag’s ontologies formalise the terms in the EAGLES (1996a) recommendations and their corresponding terms within the ISO Morphosyntactic Annotation Framework (ISO/MAF, 2008) standard; − As for syntactic annotations, OntoTag’s ontologies incorporate the terms in the EAGLES (1996b) recommendations and their corresponding terms within the ISO Syntactic Annotation Framework (ISO/SynAF, 2010) standard draft; − Regarding semantic annotations, OntoTag’s ontologies generalise and extend the recommendations in EAGLES (1996a; 1996b) and, since no stable standards or standard drafts have been released for semantic annotation by ISO/TC 37 yet, they incorporate the terms in SIMPLE (2000) instead; − The terms coming from all these recommendations and standards were supplemented by those within the ISO Data Category Registry (ISO/DCR, 2008) and also of the ISO Linguistic Annotation Framework (ISO/LAF, 2009) standard draft when developing OntoTag’s ontologies. Third, we showed that the combination of the results of tools annotating at the same level can yield better results (both in precision and in recall) than each tool separately. In particular, 1. OntoTagger clearly outperformed two of the tools integrated into its configuration, namely DataLexica and FDG in all the combination sub-phases in which they overlapped (i.e. POS tagging, lemma annotation and morphological feature annotation). As far as the remaining tool is concerned, i.e. LACELL’s tagger, it was also outperformed by OntoTagger in POS tagging and lemma annotation, and it did not behave better than OntoTagger in the morphological feature annotation layer. 2. As an immediate result, this implies that a) This type of combination architecture configurations can be applied in order to improve significantly the accuracy of linguistic annotations; and b) Concerning the morphosyntactic level, this could be regarded as a way of constructing more robust and more accurate POS tagging systems. Fourth, Semantic Web annotations are usually performed by humans or else by machine learning systems. Both of them leave much to be desired: the former, with respect to their annotation rate; the latter, with respect to their (average) precision and recall. In this work, we showed how linguistic tools can be wrapped in order to annotate automatically Semantic Web pages using ontologies. This entails their fast, robust and accurate semantic annotation. As a way of example, as mentioned in Sub-goal 5.5, we developed a particular OntoTagger module for the recognition, classification and labelling of named entities, according to the MUC and ACE tagsets (Chinchor, 1997; Doddington et al., 2004). These tagsets were further specified by means of a domain ontology, namely the Cinema Named Entities Ontology (CNEO). This module was applied to the automatic annotation of ten different web pages containing cinema reviews (that is, around 5000 words). In addition, the named entities annotated with this module were also labelled as instances (or individuals) of the classes included in the CNEO and, then, were used to populate this domain ontology. • The statistical results obtained from the evaluation of this particular module of OntoTagger can be summarised as follows. On the one hand, as far as recall (R) is concerned, (R.1) the lowest value was 76,40% (for file 7); (R.2) the highest value was 97, 50% (for file 3); and (R.3) the average value was 88,73%. On the other hand, as far as the precision rate (P) is concerned, (P.1) its minimum was 93,75% (for file 4); (R.2) its maximum was 100% (for files 1, 5, 7, 8, 9, and 10); and (R.3) its average value was 98,99%. • These results, which apply to the tasks of named entity annotation and ontology population, are extraordinary good for both of them. They can be explained on the basis of the high accuracy of the annotations provided by OntoTagger at the lower levels (mainly at the morphosyntactic level). However, they should be conveniently qualified, since they might be too domain- and/or language-dependent. It should be further experimented how our approach works in a different domain or a different language, such as French, English, or German. • In any case, the results of this application of Human Language Technologies to Ontology Population (and, accordingly, to Ontological Engineering) seem very promising and encouraging in order for these two areas to collaborate and complement each other in the area of semantic annotation. Fifth, as shown in the State of the Art of this work, there are different approaches and models for the semantic annotation of texts, but all of them focus on a particular view of the semantic level. Clearly, all these approaches and models should be integrated in order to bear a coherent and joint semantic annotation level. OntoTag shows how (i) these semantic annotation layers could be integrated together; and (ii) they could be integrated with the annotations associated to other annotation levels. Sixth, we identified some recommendations, best practices and lessons learned for annotation standardisation, interoperation and merge. They show how standardisation (via ontologies, in this case) enables the combination, integration and interoperation of different linguistic tools and their annotations into a multilayered (or multileveled) linguistic annotation, which is one of the hot topics in the area of Linguistic Annotation. And last but not least, OntoTag’s annotation scheme and OntoTagger’s annotation schemas show a way to formalise and annotate coherently and uniformly the different units and features associated to the different levels and layers of linguistic annotation. This is a great scientific step ahead towards the global standardisation of this area, which is the aim of ISO/TC 37 (in particular, Subcommittee 4, dealing with the standardisation of linguistic annotations and resources).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomedical ontologies are key elements for building up the Life Sciences Semantic Web. Reusing and building biomedical ontologies requires flexible and versatile tools to manipulate them efficiently, in particular for enriching their axiomatic content. The Ontology Pre Processor Language (OPPL) is an OWL-based language for automating the changes to be performed in an ontology. OPPL augments the ontologists’ toolbox by providing a more efficient, and less error-prone, mechanism for enriching a biomedical ontology than that obtained by a manual treatment. Results We present OPPL-Galaxy, a wrapper for using OPPL within Galaxy. The functionality delivered by OPPL (i.e. automated ontology manipulation) can be combined with the tools and workflows devised within the Galaxy framework, resulting in an enhancement of OPPL. Use cases are provided in order to demonstrate OPPL-Galaxy’s capability for enriching, modifying and querying biomedical ontologies. Conclusions Coupling OPPL-Galaxy with other bioinformatics tools of the Galaxy framework results in a system that is more than the sum of its parts. OPPL-Galaxy opens a new dimension of analyses and exploitation of biomedical ontologies, including automated reasoning, paving the way towards advanced biological data analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The W3C Semantic Sensor Network Incubator group (the SSN-XG) produced an OWL 2 ontology to describe sensors and observations ? the SSN ontology, available at http://purl.oclc.org/NET/ssnx/ssn. The SSN ontology can describe sensors in terms of capabilities, measurement processes, observations and deployments. This article describes the SSN ontology. It further gives an example and describes the use of the ontology in recent research projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ontology antipatterns are structures that reflect ontology modelling problems, they lead to inconsistencies, bad reasoning performance or bad formalisation of domain knowledge. Antipatterns normally appear in ontologies developed by those who are not experts in ontology engineering. Based on our experience in ontology design, we have created a catalogue of such antipatterns in the past, and in this paper we describe how we can use SPARQL-DL to detect them. We conduct some experiments to detect them in a large OWL ontology corpus obtained from the Watson ontology search portal. Our results show that each antipattern needs a specialised detection method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ontology antipatterns are structures that reflect ontology modelling problems because they lead to inconsistencies, bad reasoning performance or bad formalisation of domain knowledge. We propose four methods for the detection of antipatterns using SPARQL queries.We conduct some experiments to detect antipattern in a corpus of OWL ontologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Provenance is key for describing the evolution of a resource, the entity responsible for its changes and how these changes affect its final state. A proper description of the provenance of a resource shows who has its attribution and can help resolving whether it can be trusted or not. This tutorial will provide an overview of the W3C PROV data model and its serialization as an OWL ontology. The tutorial will incrementally explain the features of the PROV data model, from the core starting terms to the most complex concepts. Finally, the tutorial will show the relation between PROV-O and the Dublin Core Metadata terms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A growing number of ontologies are already available thanks to development initiatives in many different fields. In such ontology developments, developers must tackle a wide range of difficulties and handicaps, which can result in the appearance of anomalies in the resulting ontologies. Therefore, ontology evaluation plays a key role in ontology development projects. OOPS! is an on-line tool that automatically detects pitfalls, considered as potential errors or problems, and thus may help ontology developers to improve their ontologies. To gain insight in the existence of pitfalls and to assess whether there are differences among ontologies developed by novices, a random set of already scanned ontologies, and existing well-known ones, data of 406 OWL ontologies were analysed on OOPS!’s 21 pitfalls, of which 24 ontologies were also examined manually on the detected pitfalls. The various analyses performed show only minor differences between the three sets of ontologies, therewith providing a general landscape of pitfalls in ontologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, there is a great deal of well-founded explicit knowledge formalizing general notions, such as time concepts and the part_of relation. Yet, it is often the case that instead of reusing ontologies that implement such notions (the so-called general ontologies), engineers create procedural programs that implicitly implement this knowledge. They do not save time and code by reusing explicit knowledge, and devote effort to solve problems that other people have already adequately solved. Consequently, we have developed a methodology that helps engineers to: (a) identify the type of general ontology to be reused; (b) find out which axioms and definitions should be reused; (c) make a decision, using formal concept analysis, on what general ontology is going to be reused; and (d) adapt and integrate the selected general ontology in the domain ontology to be developed. To illustrate our approach we have employed use-cases. For each use case, we provide a set of heuristics with examples. Each of these heuristics has been tested in either OWL or Prolog. Our methodology has been applied to develop a pharmaceutical product ontology. Additionally, we have carried out a controlled experiment with graduated students doing a MCs in Artificial Intelligence. This experiment has yielded some interesting findings concerning what kind of features the future extensions of the methodology should have.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este Proyecto Fin de Grado trabaja en pos de la mejora y ampliación de los sistemas Pegaso y Gades, dos Sistemas Expertos enmarcados en el ámbito de la e-Salud. Estos sistemas, que ya estaban en funcionamiento antes del comienzo de este trabajo, apoyan la toma de decisiones en Atención Primaria. Esto es, permiten evaluar el nivel de adquisición del lenguaje en niños de 0 a 6 años a través de sus respectivas aplicaciones web. Además, permiten almacenar dichas evaluaciones y consultarlas posteriormente, junto con las decisiones del sistema asociadas a las mismas. Pegaso y Gades siguen una arquitectura de tres capas y están desarrollados usando fundamentalmente componentes Java y siguiendo. Como parte de este trabajo, en primer lugar se solucionan algunos problemas en el comportamiento de ambos sistemas, como su incompatibilidad con Java SE 7. A continuación, se desarrolla una aplicación que permite generar una ontología en lenguaje OWL desde código Java. Para ello, se estudia primero el concepto de ontología, el lenguaje OWL y las diferentes librerías Java existentes para generar ontologías OWL. Por otra parte, se mejoran algunas de las funcionalidades de los sistemas de partida y se desarrolla una nueva funcionalidad para la explotación de los datos almacenados en las bases de datos de ambos sistemas Esta nueva funcionalidad consiste en un módulo responsable de la generación de estadísticas a partir de los datos de las evaluaciones del lenguaje que hayan sido realizadas y, por tanto, almacenadas en las bases de datos. Estas estadísticas, que pueden ser consultadas por todos los usuarios de Pegaso y Gades, permiten establecer correlaciones entre los diversos conjuntos de datos de las evaluaciones del lenguaje. Por último, las estadísticas son mostradas por pantalla en forma de varios tipos de gráficas y tablas, de modo que los usuarios expertos puedan analizar la información contenida en ellas. ABSTRACT. This Bachelor's Thesis works towards improving and expanding the systems Pegaso and Gades, which are two Expert Systems that belong to the e-Health field. These systems, which were already operational before starting this work, support the decision-making process in Primary Care. That is, they allow to evaluate the language acquisition level in children from 0 to 6 years old. They also allow to store these evaluations and consult them afterwards, together with the decisions associated to each of them. Pegaso and Gades follow a three-tier architecture and are developed using mainly Java components. As part of this work, some of the behavioural problems of both systems are fixed, such as their incompatibility with Java SE 7. Next, an application that allows to generate an OWL ontology from Java code is developed. In order to do that, the concept of ontology, the OWL language and the different existing Java libraries to generate OWL ontologies are studied. On the other hand, some of the functionalities of the initial systems are improved and a new functionality to utilise the data stored in the databases of both systems is developed. This new functionality consists of a module responsible for the generation of statistics from the data of the language evaluations that have been performed and, thus, stored in the databases. These statistics, which can be consulted by all users of Pegaso and Gades, allow to establish correlations between the diverse set of data from the language evaluations. Finally, the statistics are presented to the user on the screen in the shape of various types of charts and tables, so that the expert users can analyse the information contained in them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los servicios en red que conocemos actualmente están basados en documentos y enlaces de hipertexto que los relacionan entre sí sin aportar verdadera información acerca de los contenidos que representan. Podría decirse que se trata de “una red diseñada por personas para ser interpretada por personas”. El objetivo principal de los últimos años es encaminar esta red hacia una web de conocimiento, en la que la información pueda ser interpretada por agentes computerizados de manera automática. Para llevar a cabo esta transformación es necesaria la utilización de nuevas tecnologías especialmente diseñadas para la descripción de contenidos como son las ontologías. Si bien las redes convencionales están evolucionando, no son las únicas que lo están haciendo. El rápido crecimiento de las redes de sensores y el importante aumento en el número de dispositivos conectados a internet, hace necesaria la incorporación de tecnologías de la web semántica a este tipo de redes. Para la realización de este Proyecto de Fin de Carrera se utilizará la ontología SSN, diseñada para la descripción semántica de sensores y las redes de las que forman parte con el fin de permitir una mejor interacción entre los dispositivos y los sistemas que hacen uso de ellos. El trabajo desarrollado a lo largo de este Proyecto de Fin de Carrera gira en torno a esta ontología, siendo el principal objetivo la generación semiautomática de código a partir de un modelo de sistemas descrito en función de las clases y propiedades proporcionadas por SSN. Para alcanzar este fin se dividirá el proyecto en varias partes. Primero se realizará un análisis de la ontología mencionada. A continuación se describirá un sistema simulado de sensores y por último se implementarán las aplicaciones para la generación automática de interfaces y la representación gráfica de los dispositivos del sistema a partir de la representación del éste en un fichero de tipo OWL. ABSTRACT. The web we know today is based on documents and hypertext links that relate these documents with each another, without providing consistent information about the contents they represent. It could be said that its a network designed by people to be used by people. The main goal of the last couple of years is to guide this network into a web of knowledge, where information can be automatically processed by machines. This transformation, requires the use of new technologies specially designed for content description such as ontologies. Nowadays, conventional networks are not the only type of networks evolving. The use of sensor networks and the number of sensor devices connected to the Internet is rapidly increasing, making the use the integration of semantic web technologies to this kind of networks completely necessary. The SSN ontology will be used for the development of this Final Degree Dissertation. This ontology was design to semantically describe sensors and the networks theyre part of, allowing a better interaction between devices and the systems that use them. The development carried through this Final Degree Dissertation revolves around this ontology and aims to achieve semiautomatic code generation starting from a system model described based on classes and properties provided by SSN. To reach this goal, de Dissertation will be divided in several parts. First, an analysis about the mentioned ontology will be made. Following this, a simulated sensor system will be described, and finally, the implementation of the applications will take place. One of these applications will automatically generate de interfaces and the other one will graphically represents the devices in the sensor system, making use of the system representation in an OWL file.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La creciente complejidad, heterogeneidad y dinamismo inherente a las redes de telecomunicaciones, los sistemas distribuidos y los servicios avanzados de información y comunicación emergentes, así como el incremento de su criticidad e importancia estratégica, requieren la adopción de tecnologías cada vez más sofisticadas para su gestión, su coordinación y su integración por parte de los operadores de red, los proveedores de servicio y las empresas, como usuarios finales de los mismos, con el fin de garantizar niveles adecuados de funcionalidad, rendimiento y fiabilidad. Las estrategias de gestión adoptadas tradicionalmente adolecen de seguir modelos excesivamente estáticos y centralizados, con un elevado componente de supervisión y difícilmente escalables. La acuciante necesidad por flexibilizar esta gestión y hacerla a la vez más escalable y robusta, ha provocado en los últimos años un considerable interés por desarrollar nuevos paradigmas basados en modelos jerárquicos y distribuidos, como evolución natural de los primeros modelos jerárquicos débilmente distribuidos que sucedieron al paradigma centralizado. Se crean así nuevos modelos como son los basados en Gestión por Delegación, en el paradigma de código móvil, en las tecnologías de objetos distribuidos y en los servicios web. Estas alternativas se han mostrado enormemente robustas, flexibles y escalables frente a las estrategias tradicionales de gestión, pero continúan sin resolver aún muchos problemas. Las líneas actuales de investigación parten del hecho de que muchos problemas de robustez, escalabilidad y flexibilidad continúan sin ser resueltos por el paradigma jerárquico-distribuido, y abogan por la migración hacia un paradigma cooperativo fuertemente distribuido. Estas líneas tienen su germen en la Inteligencia Artificial Distribuida (DAI) y, más concretamente, en el paradigma de agentes autónomos y en los Sistemas Multi-agente (MAS). Todas ellas se perfilan en torno a un conjunto de objetivos que pueden resumirse en alcanzar un mayor grado de autonomía en la funcionalidad de la gestión y una mayor capacidad de autoconfiguración que resuelva los problemas de escalabilidad y la necesidad de supervisión presentes en los sistemas actuales, evolucionar hacia técnicas de control fuertemente distribuido y cooperativo guiado por la meta y dotar de una mayor riqueza semántica a los modelos de información. Cada vez más investigadores están empezando a utilizar agentes para la gestión de redes y sistemas distribuidos. Sin embargo, los límites establecidos en sus trabajos entre agentes móviles (que siguen el paradigma de código móvil) y agentes autónomos (que realmente siguen el paradigma cooperativo) resultan difusos. Muchos de estos trabajos se centran en la utilización de agentes móviles, lo cual, al igual que ocurría con las técnicas de código móvil comentadas anteriormente, les permite dotar de un mayor componente dinámico al concepto tradicional de Gestión por Delegación. Con ello se consigue flexibilizar la gestión, distribuir la lógica de gestión cerca de los datos y distribuir el control. Sin embargo se permanece en el paradigma jerárquico distribuido. Si bien continúa sin definirse aún una arquitectura de gestión fiel al paradigma cooperativo fuertemente distribuido, estas líneas de investigación han puesto de manifiesto serios problemas de adecuación en los modelos de información, comunicación y organizativo de las arquitecturas de gestión existentes. En este contexto, la tesis presenta un modelo de arquitectura para gestión holónica de sistemas y servicios distribuidos mediante sociedades de agentes autónomos, cuyos objetivos fundamentales son el incremento del grado de automatización asociado a las tareas de gestión, el aumento de la escalabilidad de las soluciones de gestión, soporte para delegación tanto por dominios como por macro-tareas, y un alto grado de interoperabilidad en entornos abiertos. A partir de estos objetivos se ha desarrollado un modelo de información formal de tipo semántico, basado en lógica descriptiva que permite un mayor grado de automatización en la gestión en base a la utilización de agentes autónomos racionales, capaces de razonar, inferir e integrar de forma dinámica conocimiento y servicios conceptualizados mediante el modelo CIM y formalizados a nivel semántico mediante lógica descriptiva. El modelo de información incluye además un “mapping” a nivel de meta-modelo de CIM al lenguaje de especificación de ontologías OWL, que supone un significativo avance en el área de la representación y el intercambio basado en XML de modelos y meta-información. A nivel de interacción, el modelo aporta un lenguaje de especificación formal de conversaciones entre agentes basado en la teoría de actos ilocucionales y aporta una semántica operacional para dicho lenguaje que facilita la labor de verificación de propiedades formales asociadas al protocolo de interacción. Se ha desarrollado también un modelo de organización holónico y orientado a roles cuyas principales características están alineadas con las demandadas por los servicios distribuidos emergentes e incluyen la ausencia de control central, capacidades de reestructuración dinámica, capacidades de cooperación, y facilidades de adaptación a diferentes culturas organizativas. El modelo incluye un submodelo normativo adecuado al carácter autónomo de los holones de gestión y basado en las lógicas modales deontológica y de acción.---ABSTRACT---The growing complexity, heterogeneity and dynamism inherent in telecommunications networks, distributed systems and the emerging advanced information and communication services, as well as their increased criticality and strategic importance, calls for the adoption of increasingly more sophisticated technologies for their management, coordination and integration by network operators, service providers and end-user companies to assure adequate levels of functionality, performance and reliability. The management strategies adopted traditionally follow models that are too static and centralised, have a high supervision component and are difficult to scale. The pressing need to flexibilise management and, at the same time, make it more scalable and robust recently led to a lot of interest in developing new paradigms based on hierarchical and distributed models, as a natural evolution from the first weakly distributed hierarchical models that succeeded the centralised paradigm. Thus new models based on management by delegation, the mobile code paradigm, distributed objects and web services came into being. These alternatives have turned out to be enormously robust, flexible and scalable as compared with the traditional management strategies. However, many problems still remain to be solved. Current research lines assume that the distributed hierarchical paradigm has as yet failed to solve many of the problems related to robustness, scalability and flexibility and advocate migration towards a strongly distributed cooperative paradigm. These lines of research were spawned by Distributed Artificial Intelligence (DAI) and, specifically, the autonomous agent paradigm and Multi-Agent Systems (MAS). They all revolve around a series of objectives, which can be summarised as achieving greater management functionality autonomy and a greater self-configuration capability, which solves the problems of scalability and the need for supervision that plague current systems, evolving towards strongly distributed and goal-driven cooperative control techniques and semantically enhancing information models. More and more researchers are starting to use agents for network and distributed systems management. However, the boundaries established in their work between mobile agents (that follow the mobile code paradigm) and autonomous agents (that really follow the cooperative paradigm) are fuzzy. Many of these approximations focus on the use of mobile agents, which, as was the case with the above-mentioned mobile code techniques, means that they can inject more dynamism into the traditional concept of management by delegation. Accordingly, they are able to flexibilise management, distribute management logic about data and distribute control. However, they remain within the distributed hierarchical paradigm. While a management architecture faithful to the strongly distributed cooperative paradigm has yet to be defined, these lines of research have revealed that the information, communication and organisation models of existing management architectures are far from adequate. In this context, this dissertation presents an architectural model for the holonic management of distributed systems and services through autonomous agent societies. The main objectives of this model are to raise the level of management task automation, increase the scalability of management solutions, provide support for delegation by both domains and macro-tasks and achieve a high level of interoperability in open environments. Bearing in mind these objectives, a descriptive logic-based formal semantic information model has been developed, which increases management automation by using rational autonomous agents capable of reasoning, inferring and dynamically integrating knowledge and services conceptualised by means of the CIM model and formalised at the semantic level by means of descriptive logic. The information model also includes a mapping, at the CIM metamodel level, to the OWL ontology specification language, which amounts to a significant advance in the field of XML-based model and metainformation representation and exchange. At the interaction level, the model introduces a formal specification language (ACSL) of conversations between agents based on speech act theory and contributes an operational semantics for this language that eases the task of verifying formal properties associated with the interaction protocol. A role-oriented holonic organisational model has also been developed, whose main features meet the requirements demanded by emerging distributed services, including no centralised control, dynamic restructuring capabilities, cooperative skills and facilities for adaptation to different organisational cultures. The model includes a normative submodel adapted to management holon autonomy and based on the deontic and action modal logics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study query answering and rewriting in ontologybased data access. Specifically, we present an algorithm for computing a perfect rewriting of unions of conjunctive queries posed over ontologies expressed in the description logic ELHIO, which covers the OWL 2 QL and OWL 2 EL profiles. The novelty of our algorithm is the use of a set of ABox dependencies, which are compiled into a so-called EBox, to limit the expansion of the rewriting. So far, EBoxes have only been used in query rewriting in the case of DL-Lite, which is less expressive than ELHIO. We have extensively evaluated our new query rewriting technique, and in this paper we discuss the tradeoff between the reduction of the size of the rewriting and the computational cost of our approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a Focused Crawler in order to Get Semantic Web Resources (CSR). Structured data web are available in formats such as Extensible Markup Language (XML), Resource Description Framework (RDF) and Ontology Web Language (OWL) that can be used for processing. One of the main challenges for performing a manual search and download semantic web resources is that this task consumes a lot of time. Our research work propose a focused crawler which allow to download these resources automatically and store them on disk in order to have a collection that will be used for data processing. CRS consists of three layers: (a) The User Interface Layer, (b) The Focus Crawler Layer and (c) The Base Crawler Layer. CSR uses as a selection policie the Shark-Search method. CSR was conducted with two experiments. The first one starts on December 15 2012 at 7:11 am and ends on December 16 2012 at 4:01 were obtained 448,123,537 bytes of data. The CSR ends by itself after to analyze 80,4375 seeds with an unlimited depth. CSR got 16,576 semantic resources files where the 89 % was RDF, the 10 % was XML and the 1% was OWL. The second one was based on the Web Data Commons work of the Research Group Data and Web Science at the University of Mannheim and the Institute AIFB at the Karlsruhe Institute of Technology. This began at 4:46 am of June 2 2013 and 1:37 am June 9 2013. After 162.51 hours of execution the result was 285,279 semantic resources where predominated the XML resources with 99 % and OWL and RDF with 1 % each one.