25 resultados para NEA Photakothoden Lebensdauer Vakuum
Resumo:
Historically, the prediction of safety margins has been based on system level thermal-hydraulic calculations employing suitable empirical formulations for assembly specific geometries and fuel-element grid spacers. These works have assessed response, margins, and consequences for the system based on one-dimensional two-fluid or drift-flux type thermalhydraulics formulations with fuel-vendor specific hydraulic losses and heat transfer characteristics for various fuel assemblies, including the so-called hot channel. Analysis of the hot channel gives important information on flow rates, fuel element centerline temperature, fuel sheath temperature, and margin to the departure from nucleate boiling. Given the reliance of the above approaches on empirical formulations obtained from complex and often difficult experiments, there is significant interest in obtaining reliable and accurate results from computation tools which employ more fundamental empirical relationships which can be obtained from subsets of the domain or from other scaled experiments.
Resumo:
T actitivity in LiPb LiPb mock-up material irradiated in Frascati: measurement and MCNP results
Resumo:
Since the Three Mile Island accident, an important focus of pressurized water reactor (PWR) transient analyses has been a small-break loss-of-coolant accident (SBLOCA). In 2002, the discovery of thinning of the vessel head wall at the Davis Besse nuclear power plant reactor indicated the possibility of an SBLOCA in the upper head of the reactor vessel as a result of circumferential cracking of a control rod drive mechanism penetration nozzle - which has cast even greater importance on the study of SBLOCAs. Several experimental tests have been performed at the Large Scale Test Facility to simulate the behavior of a PWR during an upper-head SBLOCA. The last of these tests, Organisation for Economic Co-operation and Development Nuclear Energy Agency Rig of Safety Assessment (OECD/NEA ROSA) Test 6.1, was performed in 2005. This test was simulated with the TRACE 5.0 code, and good agreement with the experimental results was obtained. Additionally, a broad analysis of an upper-head SBLOCA with high-pressure safety injection failed in a Westinghouse PWR was performed taking into account different accident management actions and conditions in order to check their suitability. This issue has been analyzed also in the framework of the OECD/NEA ROSA project and the Code Applications and Maintenance Program (CAMP). The main conclusion is that the current emergency operating procedures for Westinghouse reactor design are adequate for these kinds of sequences, and they do not need to be modified.
Resumo:
The neutron capture (n,gamma) cross-section for 27-Co-58 theoretically presents a single resonance for 9 eV. However, after plotting the processed library, a discontinuity is made clear as the cross section plummets down to cero in a small range of energy where the peak of the resonance would be expected.
Resumo:
The perturbation approach relies in principle on a unique “NJOY + MCNP5 + SUSD3D”calculation. The inputs are the geometry MCNP5 input file and an ENDF file containing covariances.
Resumo:
Burn-up credit analyses are based on depletion calculations that provide an accurate prediction of spent fuel isotopic contents, followed by criticality calculations to assess keff
Resumo:
Determining as accurate as possible spent nuclear fuel isotopic content is gaining importance due to its safety and economic implications. Since nowadays higher burn ups are achievable through increasing initial enrichments, more efficient burn up strategies within the reactor cores and the extension of the irradiation periods, establishing and improving computation methodologies is mandatory in order to carry out reliable criticality and isotopic prediction calculations. Several codes (WIMSD5, SERPENT 1.1.7, SCALE 6.0, MONTEBURNS 2.0 and MCNP-ACAB) and methodologies are tested here and compared to consolidated benchmarks (OECD/NEA pin cell moderated with light water) with the purpose of validating them and reviewing the state of the isotopic prediction capabilities. These preliminary comparisons will suggest what can be generally expected of these codes when applied to real problems. In the present paper, SCALE 6.0 and MONTEBURNS 2.0 are used to model the same reported geometries, material compositions and burn up history of the Spanish Van de llós II reactor cycles 7-11 and to reproduce measured isotopies after irradiation and decay times. We analyze comparisons between measurements and each code results for several grades of geometrical modelization detail, using different libraries and cross-section treatment methodologies. The power and flux normalization method implemented in MONTEBURNS 2.0 is discussed and a new normalization strategy is developed to deal with the selected and similar problems, further options are included to reproduce temperature distributions of the materials within the fuel assemblies and it is introduced a new code to automate series of simulations and manage material information between them. In order to have a realistic confidence level in the prediction of spent fuel isotopic content, we have estimated uncertainties using our MCNP-ACAB system. This depletion code, which combines the neutron transport code MCNP and the inventory code ACAB, propagates the uncertainties in the nuclide inventory assessing the potential impact of uncertainties in the basic nuclear data: cross-section, decay data and fission yields
Resumo:
Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermalhydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. The limitations encountered in the application of the Analytic Coarse Mesh Finite Difference (ACMFD) method –implemented inside ANDES– to fast reactors are presented and the sensitivity of the method when using a high number of energy groups is studied. ANDES performance is assessed by comparison with the results provided by ERANOS, using a mini-core model in 33 energy groups. Furthermore, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry and 4 energy groups is also employed to verify the behavior of the code with few energy groups.
Resumo:
The need to refine models for best-estimate calculations, based on good-quality experimental data, has been expressed in many recent meetings in the field of nuclear applications. The modeling needs arising in this respect should not be limited to the currently available macroscopic methods but should be extended to next-generation analysis techniques that focus on more microscopic processes. One of the most valuable databases identified for the thermalhydraulics modeling was developed by the Nuclear Power Engineering Corporation (NUPEC), Japan. From 1987 to 1995, NUPEC performed steady-state and transient critical power and departure from nucleate boiling (DNB) test series based on the equivalent full-size mock-ups. Considering the reliability not only of the measured data, but also other relevant parameters such as the system pressure, inlet sub-cooling and rod surface temperature, these test series supplied the first substantial database for the development of truly mechanistic and consistent models for boiling transition and critical heat flux. Over the last few years the Pennsylvania State University (PSU) under the sponsorship of the U.S. Nuclear Regulatory Commission (NRC) has prepared, organized, conducted and summarized the OECD/NRC Full-size Fine-mesh Bundle Tests (BFBT) Benchmark. The international benchmark activities have been conducted in cooperation with the Nuclear Energy Agency/Organization for Economic Co-operation and Development (NEA/OECD) and Japan Nuclear Energy Safety (JNES) organization, Japan. Consequently, the JNES has made available the Boiling Water Reactor (BWR) NUPEC database for the purposes of the benchmark. Based on the success of the OECD/NRC BFBT benchmark the JNES has decided to release also the data based on the NUPEC Pressurized Water Reactor (PWR) subchannel and bundle tests for another follow-up international benchmark entitled OECD/NRC PWR Subchannel and Bundle Tests (PSBT) benchmark. This paper presents an application of the joint Penn State University/Technical University of Madrid (UPM) version of the well-known subchannel code COBRA-TF, namely CTF, to the critical power and departure from nucleate boiling (DNB) exercises of the OECD/NRC BFBT and PSBT benchmarks
Resumo:
En el año 2002 durante una inspección se localizó una importante corrosión en la cabeza de la vasija de Davis Besse NPP. Si no se hubiera producido esa detección temprana, la corrosión hubiera provocado una pequeña rotura en la cabeza de la vasija. La OECD/NEA consideró la importancia de simular esta secuencia en la instalación experimental ROSA, la cual fue reproducida posteriormente por grupos de investigación internacionales con varios códigos de planta. En este caso el código utilizado para la simulación de las secuencias experimentales es TRACE. Los resultados de este test experimental fueron muy analizados internacionalmente por la gran influencia que dos factores tenía sobre el resultado: las acciones del operador relativas a la despresurización y la detección del descubrimiento del núcleo por los termopares que se encuentran a su salida. El comienzo del inicio de la despresurización del secundario estaba basado en la determinación del descubrimiento del núcleo por la lectura de los temopares de salida del núcleo. En el experimento se registró un retraso importante en la determinación de ese descubrimiento, comenzando la despresurización excesivamente tarde y haciendo necesaria la desactivación de los calentadores que simulan el núcleo del reactor para evitar su daño. Dada las condiciones excesivamente conservadoras del test experimentale, como el fallo de los dos trenes de inyección de alta presión durante todo el transitorio, en las aplicaciones de los experimentos con modelo de Almaraz NPP, se ha optado por reproducir dicho accidente con condiciones más realistas, verificando el impacto en los resultados de la disponibilidad de los trenes de inyección de alta presión o los tiempos de las acciones manuales del operador, como factores más limitantes y estableciendo el diámetro de rotura en 1”
Resumo:
La simulación de accidentes de rotura pequeña en el fondo de la vasija se aparta del convencional análisis de LOCA de rama fría, el más limitante en los análisis deterministas La rotura de una de las penetraciones de instrumentación de la vasija ha sido desestimada históricamente en los análisis de licencia y en los Análisis Probabilistas de Seguridad y por ello, hay una falta evidente de literatura para dicho análisis. En el año 2003 durante una inspección, se detectó una considerable corrosión en el fondo de la vasija de South Texas Project Unit I NPP. La evolución en el tiempo de dicha corrosión habría derivado en una pequeña rotura en el fondo de la vasija si su detección no se hubiera producido a tiempo. La OECD/NEA consideró la importancia de simular dicha secuencia en la instalación experimental ROSA, la cual fue reproducida posteriormente por grupos de investigación internacionales con varios códigos de planta. En este caso el código utilizado para la simulación de las secuencias experimentales es TRACE. Tanto en el experimento como en la simulación se observaron las dificultades de reinundar la vasija al tener la rotura en el fondo de la misma, haciendo clave la gestión del accidente por parte del operador. Dadas las condiciones excesivamente conservadoras del test experimental, como el fallo de los dos trenes de inyección de alta presión durante todo el transitorio, en las aplicaciones de los experimentos con modelo de Almaraz NPP, se ha optado por reproducir dicho accidente con condiciones más realistas, verificando el impacto en los resultados de la disponibilidad de los trenes de inyección de alta presión o los tiempos de las acciones manuales del operador, como factores más limitantes y estableciendo el diámetro de rotura en 1”
Resumo:
The possibility of capturing a small Near Earth Asteroid (NEA) and deliver it to the vicinity of the Earth has been recently explored by different authors. The key advantage would be to allow a cheap and quick access to the NEA for science, resource utilization and other purposes. Among the different challenges related to this operation stands the difficulty of robotically capturing the object, whose composition and dynamical state could be problematic. In order to simplify the capture operation we propose the use of a collimated ion beam ejected from a hovering spacecraft in order to maneuver the object without direct physical contact. The feasibility of a possible asteroid retrieval mission is evaluated.
Resumo:
We studied the coastal zone of the Tavoliere di Puglia plain, (Puglia region, southern Italy) with the aim to recognize the main unconformities, and therefore, the unconformity-bounded stratigraphic units (UBSUs; Salvador 1987, 1994) forming its Quaternary sedimentary fill. Recognizing unconformities is particularly problematic in an alluvial plain, due to the difficulties in distinguishing the unconformities that bound the UBSUs. So far, the recognition of UBSUs in buried successions has been made mostly by using seismic profiles. Instead, in our case, the unavailability of the latter has prompted us to address the problem by developing a methodological protocol consisting of the following steps: I) geological survey in the field; II) draft of a preliminary geological setting based on the field-survey results; III) dating of 102 samples coming from a large number of boreholes and some outcropping sections by means of the amino acid racemization (AAR) method applied to ostracod shells and 14C dating, filtering of the ages and the selection of valid ages; IV) correction of the preliminary geological setting in the light of the numerical ages; definition of the final geological setting with UBSUs; identification of a ‘‘hypothetical’’ or ‘‘attributed time range’’ (HTR or ATR) for each UBSU, the former very wide and subject to a subsequent modification, the latter definitive; V) cross-checking between the numerical ages and/or other characteristics of the sedimentary bodies and/or the sea-level curves (with their effects on the sedimentary processes) in order to restrict also the hypothetical time ranges in the attributed time ranges. The successful application of AAR geochronology to ostracod shells relies on the fact that the ability of ostracods to colonize almost all environments constitutes a tool for correlation, and also allow the inclusion in the same unit of coeval sediments that differ lithologically and paleoenvironmentally. The treatment of the numerical ages obtained using the AAR method required special attention. The first filtering step was made by the laboratory (rejection criteria a and b). Then, the second filtering step was made by testing in the field the remaining ages. Among these, in fact, we never compared an age with a single preceding and/or following age; instead, we identified homogeneous groups of numerical ages consistent with their reciprocal stratigraphic position. This operation led to the rejection of further numerical ages that deviate erratically from a larger, homogeneous age population which fits well with its stratigraphic position (rejection criterion c). After all of the filtering steps, the valid ages that remained were used for the subdivision of the sedimentary sequences into UBSUs together with the lithological and paleoenvironmental criteria. The numerical ages allowed us, in the first instance, to recognize all of the age gaps between two consecutive samples. Next, we identified the level, in the sedimentary thickness that is between these two samples, that may represent the most suitable UBSU boundary based on its lithology and/or the paleoenvironment. The recognized units are: I) Coppa Nevigata sands (NEA), HTR: MIS 20–14, ATR: MIS 17–16; II) Argille subappennine (ASP), HTR: MIS 15–11, ATR: MIS 15–13; III) Coppa Nevigata synthem (NVI), HTR: MIS 13–8, ATR: MIS 12–11; IV) Sabbie di Torre Quarto (STQ), HTR: MIS 13–9.1, ATR: MIS 11; V) Amendola subsynthem (MLM1), HTR: MIS 12–10, ATR: MIS 11; VI) Undifferentiated continental unit (UCI), HTR: MIS 11–6.2, ATR: MIS 9.3–7.1; VII) Foggia synthem (TGF), ATR: MIS 6; VIII) Masseria Finamondo synthem (TPF), ATR: Upper Pleistocene; IX) Carapelle and Cervaro streams synthem (RPL), subdivided into: IXa) Incoronata subsynthem (RPL1), HTR: MIS 6–3; ATR: MIS 5–3; IXb) Marane La Pidocchiosa–Castello subsynthem (RPL3), ATR: Holocene; X) Masseria Inacquata synthem (NAQ), ATR: Holocene. The possibility of recognizing and dating Quaternary units in an alluvial plain to the scale of a marine isotope stage constitutes a clear step forward compared with similar studies regarding other alluvial-plain areas, where Quaternary units were dated almost exclusively using their stratigraphic position. As a result, they were generically associated with a geological sub-epoch. Instead, our method allowed a higher detail in the timing of the sedimentary processes: for example, MIS 11 and MIS 5.5 deposits have been recognized and characterized for the first time in the study area, highlighting their importance as phases of sedimentation.
Resumo:
A methodology has been developed for characterising the mechanical behaviour of concrete, based on the damaged plasticity model, enriched with a user subroutine (V)USDFLD in order to capture better the ductility of the material under moderate confining pressures. The model has been applied in the context of the international benchmark IRIS_2012, organised by the OECD/NEA/CSNI Nuclear Energy Agency, dealing with impacts of rigid and deformable missiles against reinforced concrete targets. A slightly modified version of the concrete damaged plasticity model was used to represent the concrete. The simulation results matched very well the observations made during the actual tests. Particularly successful predictions involved the energy spent by the rigid missile in perforating the target, the crushed length of the deformable missile, the crushed and cracked areas of the concrete target, and the values of the strains recorded at a number of locations in the concrete slab.
Resumo:
In the framework of the OECD/NEA project on Benchmark for Uncertainty Analysis in Modeling (UAM) for Design, Operation, and Safety Analysis of LWRs, several approaches and codes are being used to deal with the exercises proposed in Phase I, “Specifications and Support Data for Neutronics Cases.” At UPM, our research group treats these exercises with sensitivity calculations and the “sandwich formula” to propagate cross-section uncertainties. Two different codes are employed to calculate the sensitivity coefficients of to cross sections in criticality calculations: MCNPX-2.7e and SCALE-6.1. The former uses the Differential Operator Technique and the latter uses the Adjoint-Weighted Technique. In this paper, the main results for exercise I-2 “Lattice Physics” are presented for the criticality calculations of PWR. These criticality calculations are done for a TMI fuel assembly at four different states: HZP-Unrodded, HZP-Rodded, HFP-Unrodded, and HFP-Rodded. The results of the two different codes above are presented and compared. The comparison proves a good agreement between SCALE-6.1 and MCNPX-2.7e in uncertainty that comes from the sensitivity coefficients calculated by both codes. Differences are found when the sensitivity profiles are analysed, but they do not lead to differences in the uncertainty.