19 resultados para LASERS
Study of rapid ionisation for simulation of soft X-ray lasers with the 2D hydro-radiative code ARWEN
Resumo:
We present our fast ionisation routine used to study transient softX-raylasers with ARWEN, a two-dimensional hydrodynamic code incorporating adaptative mesh refinement (AMR) and radiative transport. We compute global rates between ion stages assuming an effective temperature between singly-excited levels of each ion. A two-step method is used to obtain in a straightforward manner the variation of ion populations over long hydrodynamic time steps. We compare our model with existing theoretical results both stationary and transient, finding that the discrepancies are moderate except for large densities. We simulate an existing Molybdenum Ni-like transient softX-raylaser with ARWEN. Use of the fast ionisation routine leads to a larger increase in temperature and a larger gain zone than when LTE datatables are used.
Resumo:
Continuous and long-pulse lasers have been used for the forming of metal sheets in macroscopic mechanical applications. However, for the manufacturing of micro-electromechanical systems (MEMS), the use of ns laser pulses provides a suitable parameter matching over an important range of sheet components that, preserving the short interaction time scale required for the predominantly mechanical (shock) induction of deformation residual stresses, allows for the successful processing of components in a medium range of miniaturization without appreciable thermal deformation.. In the present paper, the physics of laser shock microforming and the influence of the different experimental parameters on the net bending angle are presented.
Resumo:
The amplification of high-order harmonics (HOH) in a plasma-based amplifier is a multiscale, temporal phenomenon that couples plasma hydrodynamics, atomic processes, and HOH electromagnetic fields. We use a one-dimensional, time-dependent Maxwell-Bloch code to compare the natural amplification regime and another regime where plasma polarization is constantly forced by the HOH. In this regime, a 10-MW (i.e., 100 times higher than current seeded soft x-ray laser power), 1.5-μJ, 140-fs pulse free from the parasitic temporal structures appearing on the natural amplification regime can be obtained.
Resumo:
A new method for measuring the linewidth enhancement factor (α-parameter) of semiconductor lasers is proposed and discussed. The method itself provides an estimation of the measurement error, thus self-validating the entire procedure. The α-parameter is obtained from the temporal profile and the instantaneous frequency (chirp) of the pulses generated by gain switching. The time resolved chirp is measured with a polarization based optical differentiator. The accuracy of the obtained values of the α-parameter is estimated from the comparison between the directly measured pulse spectrum and the spectrum reconstructed from the chirp and the temporal profile of the pulse. The method is applied to a VCSEL and to a DFB laser emitting around 1550 nm at different temperatures, obtaining a measurement error lower than ± 8%.
Resumo:
Justification of the need and demand of experimental facilities to test and validate materials for first wall in laser fusion reactors - Characteristics of the laser fusion products - Current ?possible? facilities for tests Ultraintense Lasers as ?complete? solution facility - Generation of ion pulses - Generation of X-ray pulses - Generation of other relevant particles (electrons, neutrons..)
Resumo:
Monolithical series connection of silicon thin-film solar cells modules performed by laser scribing plays a very important role in the entire production of these devices. In the current laser process interconnection the two last steps are developed for a configuration of modules where the glass is essential as transparent substrate. In addition, the change of wavelength in the employed laser sources is sometimes enforced due to the nature of the different materials of the multilayer structure which make up the device. The aim of this work is to characterize the laser patterning involved in the monolithic interconnection process in a different configurations of processing than the usually performed with visible laser sources. To carry out this study, we use nanosecond and picosecond laser sources working at 355nm of wavelength in order to achieve the selective ablation of the material from the film side. To assess this selective removal of material has been used EDX (energy dispersive using X-ray) analysis
Resumo:
X-ray free-electron lasers1,2 delivering up to 131013 coherent photons in femtosecond pulses are bringing about a revolution in X-ray science3?5. However, some plasma-based soft X-ray lasers6 are attractive because they spontaneously emit an even higher number of photons (131015), but these are emitted in incoherent and long (hundreds of picoseconds) pulses7 as a consequence of the amplification of stochastic incoherent self-emission. Previous experimental attempts to seed such amplifiers with coherent femtosecond soft X-rays resulted in as yet unexplained weak amplification of the seed and strong amplification of incoherent spontaneous emission8. Using a time-dependent Maxwell?Bloch model describing the amplification of both coherent and incoherent soft X-rays in plasma, we explain the observed inefficiency and propose a new amplification scheme based on the seeding of stretched high harmonics using a transposition of chirped pulse amplification to soft X-rays. This scheme is able to deliver 531014 fully coherent soft X-ray photons in 200 fs pulses and with a peak power of 20 GW.
Resumo:
We propose a pulse shaping and shortening technique for pulses generated from gain switched single mode semiconductor lasers, based on a Mach Zehnder interferometer with variable delay. The spectral and temporal characteristics of the pulses obtained with the proposed technique are investigated with numerical simulations. Experiments are performed with a Distributed Feedback laser and a Vertical Cavity Surface Emitting Laser, emitting at 1.5 µm, obtaining pulse duration reduction of 25-30%. The main asset of the proposed technique is that it can be applied to different devices and pulses, taking advantage of the flexibility of the gain switching technique.
Resumo:
Due to the particular characteristics of the fusion products, i.e. very short pulses (less than a few μs long for ions when arriving to the walls; less than 1 ns long for X-rays), very high fluences ( 10 13 particles/cm 2 for both ions and X rays photons) and broad particle energy spectra (up to 10 MeV ions and 100 keV photons), the laser fusion community lacks of facilities to accurately test plasma facing materials under those conditions. In the present work, the ability of ultraintese lasers to create short pulses of energetic particles and high fluences is addressed as a solution to reproduce those ion and X-ray bursts. Based on those parameters, a comparison between fusion ion and laser driven ion beams is presented and discussed, describing a possible experimental set-up to generate with lasers the appropriate ion pulses. At the same time, the possibility of generating X-ray or neutron beams which simulate those of laser fusion environments is also indicated and assessed under current laser intensities. It is concluded that ultraintense lasers should play a relevant role in the validation of materials for laser fusion facilities.
Resumo:
The ability of ultraintese lasers to create short pulses of energetic particles and high fluences is addressed as a solution to reproduce ion and X-ray ICF bursts for the characterization and validation of plasma facing components. The possibility of using a laser neutron source for material testing will also be discussed.
Resumo:
Outline: • Introduction • Process Experimental Setup • Experimental Procedure • Experimental Results for Al2024-T351 and Ti6Al4V - Residual stresses - Tensile Strength - Fatigue Life • Discussion and Outlook - Prospects for technological applications of LSP
Resumo:
We present an educational software addressed to the students of optical communication courses, for a simple visualization of the basic dynamic processes of semiconductor lasers. The graphic interface allows the user to choose the laser and the modulation parameters and it plots the laser power output and instantaneous frequency versus time. Additionally, the optical frequency variations are numerically shifted into the audible frequency range in order to produce a sound wave from the computer loudspeakers. Using the proposed software, the student can simultaneously see and hear how the laser intensity and frequency change, depending on the modulation and device parameters.
Resumo:
High Intensity Lasers Application to Advanced Materials Processing: Laser Peening and Related
Resumo:
Direct optical modulation at 2.5 Gb/s with amplitude of more than 0.5 W has been demonstrated in single longitudinal mode distributed Bragg reflector tapered lasers emitting at 1060 nm with separated injection of the ridge waveguide and tapered sections. The modulating signal of ~110 mA peak to peak was applied to the ridge waveguide section, yielding a high modulation efficiency of ~5 W/A. The large-signal frequency response of the experimental set-up was limited by the bandwidth of the electrical amplifier rather than by the internal dynamics of the laser, indicating that higher bit rates could be achieved with improved driving electronics.
Resumo:
We analyze the gain-switching dynamics of two-section tapered lasers by means of a simplified three-rate-equation model. The goal is to improve the understanding of the underlying physics and to optimize the device geometry to achieve high power short duration optical pulses.