58 resultados para INTERMEDIATE FILAMENTS
Resumo:
This doctoral thesis explores some of the possibilities that near-field optics can bring to photovoltaics, and in particular to quantum-dot intermediate band solar cells (QD-IBSCs). Our main focus is the analytical optimization of the electric field distribution produced in the vicinity of single scattering particles, in order to produce the highest possible absorption enhancement in the photovoltaic medium in their surroundings. Near-field scattering structures have also been fabricated in laboratory, allowing the application of the previously studied theoretical concepts to real devices. We start by looking into the electrostatic scattering regime, which is only applicable to sub-wavelength sized particles. In this regime it was found that metallic nano-spheroids can produce absorption enhancements of about two orders of magnitude on the material in their vicinity, due to their strong plasmonic resonance. The frequency of such resonance can be tuned with the shape of the particles, allowing us to match it with the optimal transition energies of the intermediate band material. Since these metallic nanoparticles (MNPs) are to be inserted inside the cell photovoltaic medium, they should be coated by a thin insulating layer to prevent electron-hole recombination at their surface. This analysis is then generalized, using an analytical separation-of-variables method implemented in Mathematica7.0, to compute scattering by spheroids of any size and material. This code allowed the study of the scattering properties of wavelengthsized particles (mesoscopic regime), and it was verified that in this regime dielectric spheroids perform better than metallic. The light intensity scattered from such dielectric spheroids can have more than two orders of magnitude than the incident intensity, and the focal region in front of the particle can be shaped in several ways by changing the particle geometry and/or material. Experimental work was also performed in this PhD to implement in practice the concepts studied in the analysis of sub-wavelength MNPs. A wet-coating method was developed to self-assemble regular arrays of colloidal MNPs on the surface of several materials, such as silicon wafers, amorphous silicon films, gallium arsenide and glass. A series of thermal and chemical tests have been performed showing what treatments the nanoparticles can withstand for their embedment in a photovoltaic medium. MNPs arrays are then inserted in an amorphous silicon medium to study the effect of their plasmonic near-field enhancement on the absorption spectrum of the material. The self-assembled arrays of MNPs constructed in these experiments inspired a new strategy for fabricating IBSCs using colloidal quantum dots (CQDs). Such CQDs can be deposited in self-assembled monolayers, using procedures similar to those developed for the patterning of colloidal MNPs. The use of CQDs to form the intermediate band presents several important practical and physical advantages relative to the conventional dots epitaxially grown by the Stranski-Krastanov method. Besides, this provides a fast and inexpensive method for patterning binary arrays of QDs and MNPs, envisioned in the theoretical part of this thesis, in which the MNPs act as antennas focusing the light in the QDs and therefore boosting their absorption
Resumo:
An intermediate-bandphotovoltaicmaterial, which has an isolated metallic band located between the top of the valence band and bottom of the conduction band of some semiconductors, has been proposed as third generation solar cell to be used in photovoltaic applications. Density functional theory calculations of Zn in CuGaS2:Ti have previously shown that, the intermediate-band position can be modulated in proportion of Zn insertion in such a way that increasing Zn concentration can lead to aband-gap reduction, and an adjustment of the intermediate-band position. This could be interesting in the formation of an intermediate-bandmaterial, that has the maximum efficiency theoretically predicted for the intermediate-band solar cell. In this work, the energetics of several reaction schemes that could lead to the decomposition of the modulated intermediate-bandphotovoltaicmaterial, CuGaS2:Ti:Zn, is studied in order to assess the thermodynamic stability of this material. Calculations of the total free energy and disorder entropy have been taken into account, to get the reaction energy and free energy of the compound decomposition, which is found to be thermodynamically favorable
Resumo:
The intermediatebandsolarcell (IBSC) is a photovoltaic device with a theoretical conversion efficiency limit of 63.2%. In recent years many attempts have been made to fabricate an intermediateband material which behaves as the theory states. One characteristic feature of an IBSC is its luminescence spectrum. In this work the temperature dependence of the photoluminescence (PL) and electroluminescence (EL) spectra of InAs/GaAs QD-IBSCs together with their reference cell have been studied. It is shown that EL measurements provide more reliable information about the behaviour of the IB material inside the IBSC structure than PL measurements. At low temperatures, the EL spectra are consistent with the quasi-Fermi level splits described by the IBSC model, whereas at room temperature they are not. This result is in agreement with previously reported analysis of the quantum efficiency of the solarcells
Resumo:
To achieve high efficiency, the intermediate band (IB) solar cell must generate photocurrent from sub-bandgap photons at a voltage higher than that of a single contributing sub-bandgap photon. To achieve the latter, it is necessary that the IB levels be properly isolated from the valence and conduction bands. We prove that this is not the case for IB cells formed with the confined levels of InAs quantum dots (QDs) in GaAs grown so far due to the strong density of internal thermal photons at the transition energies involved. To counteract this, the QD must be smaller.
Resumo:
We propose a new kind of quantum dot (QD) materials for the implementation of the intermediate band solar cell (IBSC) [1]. The materials are formed by lead salt QDs of the family IV-VI (PbTe, PbSe or PbS) embedded in a semiconductor of the family II-VI (Cd1-xMgxTe, CdxZn1-xTe, and CdS1-xSex or ZnSe1-xTex, respectively). These QDs are not nucleated due to lattice mismatch, as it is the case of the InAs/GaAs QD material system grown by the Stranski-Krastanov (S-K) mode. In these materials, the QDs precipitate due to the difference in lattice type: the QD lead salt material crystallizes in the rocksalt structure, while the II-VI host material has the zincblende structure [2]. Therefore, it is possible to use lattice-matched QD/host combinations, avoiding all the strain-related problems found in previous QD-IBSC developments. In this paper we discuss the properties of the lead salt QD materials and propose that they are appropriate to overcome the fundamental drawbacks of present III-V-based QD-IBSC prototypes. We also calculate the band diagram for some examples of IV-VI/II-VI QD materials. The detailed balance efficiency limit of QD-IBSCs based on the studied materials is found to be over 60% under maximum concentration.
Resumo:
The intermediate band (IB) solar cell (Fig. 1) has been proposed [1] to increase photovoltaic efficiency by a factor above 1.5, based on the absorption of two sub-bandgap photons to promote an electron across the bandgap. To realize this principle, that can be applied also to obtain efficient photocatalysis with sunlight, we proposed in recent years several materials where a metal or heavy element, substituting for an electropositive atom in a known semiconductor that has an appropriate band gap width (around 2 eV), forms inside the gap the partially filled levels needed for this aim
Resumo:
The intermediate band solar cell [1] has been proposed as a concept able to substantially enhance the efficiency limit of an ordinary single junction solar cell. If a band permitted for electrons is inserted within the forbidden band of a semiconductor then a novel path for photo generation is open: electron hole pairs may be formed by the successive absorption of two sub band gap photons using the intermediate band (IB) as a stepping stone. While the increase of the photovoltaic (PV) current is not a big achievement —it suffices to reduce the band gap— the achievement of this extra current at high voltage is the key of the IB concept. In ordinary cells the voltage is limited by the band gap so that reducing it would also reduce the band gap. In the intermediate band solar cell the high voltage is produced when the IB is permitted to have a Quasi Fermi Level (QFL) different from those of the Conduction Band (CB) and the Valence Band (VB). For it the cell must be properly isolated from the external contacts, which is achieved by putting the IB material between two n- and p-type ordinary semiconductors [2]. Efficiency thermodynamic limit of 63% is obtained for the IB solar cell1 vs. the 40% obtained [3] for ordinary single junction solar cells. Detailed information about the IB solar cells can be found elsewhere [4].
Resumo:
Abstract This work is a contribution to the research and development of the intermediate band solar cell (IBSC), a high efficiency photovoltaic concept that features the advantages of both low and high bandgap solar cells. The resemblance with a low bandgap solar cell comes from the fact that the IBSC hosts an electronic energy band -the intermediate band (IB)- within the semiconductor bandgap. This IB allows the collection of sub-bandgap energy photons by means of two-step photon absorption processes, from the valence band (VB) to the IB and from there to the conduction band (CB). The exploitation of these low energy photons implies a more efficient use of the solar spectrum. The resemblance of the IBSC with a high bandgap solar cell is related to the preservation of the voltage: the open-circuit voltage (VOC) of an IBSC is not limited by any of the sub-bandgaps (involving the IB), but only by the fundamental bandgap (defined from the VB to the CB). Nevertheless, the presence of the IB allows new paths for electronic recombination and the performance of the IBSC is degraded at 1 sun operation conditions. A theoretical argument is presented regarding the need for the use of concentrated illumination in order to circumvent the degradation of the voltage derived from the increase in the recombi¬nation. This theory is supported by the experimental verification carried out with our novel characterization technique consisting of the acquisition of photogenerated current (IL)-VOC pairs under low temperature and concentrated light. Besides, at this stage of the IBSC research, several new IB materials are being engineered and our novel character¬ization tool can be very useful to provide feedback on their capability to perform as real IBSCs, verifying or disregarding the fulfillment of the “voltage preservation” principle. An analytical model has also been developed to assess the potential of quantum-dot (QD)-IBSCs. It is based on the calculation of band alignment of III-V alloyed heterojunc-tions, the estimation of the confined energy levels in a QD and the calculation of the de¬tailed balance efficiency. Several potentially useful QD materials have been identified, such as InAs/AlxGa1-xAs, InAs/GaxIn1-xP, InAs1-yNy/AlAsxSb1-x or InAs1-zNz/Alx[GayIn1-y]1-xP. Finally, a model for the analysis of the series resistance of a concentrator solar cell has also been developed to design and fabricate IBSCs adapted to 1,000 suns. Resumen Este trabajo contribuye a la investigación y al desarrollo de la célula solar de banda intermedia (IBSC), un concepto fotovoltaico de alta eficiencia que auna las ventajas de una célula solar de bajo y de alto gap. La IBSC se parece a una célula solar de bajo gap (o banda prohibida) en que la IBSC alberga una banda de energía -la banda intermedia (IB)-en el seno de la banda prohibida. Esta IB permite colectar fotones de energía inferior a la banda prohibida por medio de procesos de absorción de fotones en dos pasos, de la banda de valencia (VB) a la IB y de allí a la banda de conducción (CB). El aprovechamiento de estos fotones de baja energía conlleva un empleo más eficiente del espectro solar. La semejanza antre la IBSC y una célula solar de alto gap está relacionada con la preservación del voltaje: la tensión de circuito abierto (Vbc) de una IBSC no está limitada por ninguna de las fracciones en las que la IB divide a la banda prohibida, sino que está únicamente limitada por el ancho de banda fundamental del semiconductor (definido entre VB y CB). No obstante, la presencia de la IB posibilita nuevos caminos de recombinación electrónica, lo cual degrada el rendimiento de la IBSC a 1 sol. Este trabajo argumenta de forma teórica la necesidad de emplear luz concentrada para evitar compensar el aumento de la recom¬binación de la IBSC y evitar la degradación del voltage. Lo anterior se ha verificado experimentalmente por medio de nuestra novedosa técnica de caracterización consistente en la adquisicin de pares de corriente fotogenerada (IL)-VOG en concentración y a baja temperatura. En esta etapa de la investigación, se están desarrollando nuevos materiales de IB y nuestra herramienta de caracterizacin está siendo empleada para realimentar el proceso de fabricación, comprobando si los materiales tienen capacidad para operar como verdaderas IBSCs por medio de la verificación del principio de preservación del voltaje. También se ha desarrollado un modelo analítico para evaluar el potencial de IBSCs de puntos cuánticos. Dicho modelo está basado en el cálculo del alineamiento de bandas de energía en heterouniones de aleaciones de materiales III-V, en la estimación de la energía de los niveles confinados en un QD y en el cálculo de la eficiencia de balance detallado. Este modelo ha permitido identificar varios materiales de QDs potencialmente útiles como InAs/AlxGai_xAs, InAs/GaxIni_xP, InAsi_yNy/AlAsxSbi_x ó InAsi_zNz/Alx[GayIni_y]i_xP. Finalmente, también se ha desarrollado un modelado teórico para el análisis de la resistencia serie de una célula solar de concentración. Gracias a dicho modelo se han diseñado y fabricado IBSCs adaptadas a 1.000 soles.
Resumo:
The intermediate band solar cell (IBSC) is based on a novel photovoltaic concept and has a limiting efficiency of 63.2%, which compares favorably with the 40.7% efficiency of a conventional, single junction solar cell. It is characterized by a material hosting a collection of energy levels within its bandgap, allowing the cell to exploit photons with sub-bandgap energies in a two-step absorption process, thus improving the utilization of the solar spectrum. However, these intermediate levels are often regarded as an inherent source of supplementary recombination, although this harmful effect can in theory be counteracted by the use of concentrated light. We present here a novel, low-temperature characterization technique using concentrated light that reveals how the initially enhanced recombination in the IBSC is reduced so that its open-circuit voltage is completely recovered and reaches that of a conventional solar cell.
Resumo:
In this paper, a model for intermediate band solar cells is built based on the generally understood physical concepts ruling semiconductor device operation, with special emphasis on the behavior at low temperature. The model is compared to JL-VOC measurements at concentrations up to about 1000 suns and at temperatures down to 20 K, as well as measurements of the radiative recombination obtained from electroluminescence. The agreement is reasonable. It is found that the main reason for the reduction of open circuit voltage is an operational reduction of the bandgap, but this effect disappears at high concentrations or at low temperatures.
Resumo:
The intermediate-band solar cell is designed to provide a large photogenerated current while maintaining a high output voltage. To make this possible, these cells incorporate an energy band that is partially filled with electrons within the forbidden bandgap of a semiconductor. Photons with insufficient energy to pump electrons from the valence band to the conduction band can use this intermediate band as a stepping stone to generate an electron-hole pair. Nanostructured materials and certain alloys have been employed in the practical implementation of intermediate-band solar cells, although challenges still remain for realizing practical devices. Here we offer our present understanding of intermediate-band solar cells, as well as a review of the different approaches pursed for their practical implementation. We also discuss how best to resolve the remaining technical issues.
Resumo:
With the purpose of assessing the absorption coefficients of quantum dot solar cells, symmetry considerations are introduced into a Hamiltonian whose eigenvalues are empirical. In this way, the proper transformation from the Hamiltonian's diagonalized form to the form that relates it with Γ-point exact solutions through k.p envelope functions is built accounting for symmetry. Forbidden transitions are thus determined reducing the calculation burden and permitting a thoughtful discussion of the possible options for this transformation. The agreement of this model with the measured external quantum efficiency of a prototype solar cell is found to be excellent.
Resumo:
An intermediate band solar cell is a novel photovoltaic device with the potential to exceed the efficiency of single gap solar cells. In the last few years, several prototypes of these cells, based on different technologies, have been reported. Since these devices do not yet perform ideally, it is sometimes difficult to determine to what extent they operate as actual intermediate band solar cells. In this article we provide the essential guidelines to interpret conventional experimental results (current-voltage plots, quantum efficiency, etc.) associated with their characterization. A correct interpretation of these results is essential in order not to mislead the research efforts directed towards the improvement of the efficiency of these devices.
Resumo:
The effect of quantum dot (QD) size on the performance of quantum dot intermediate band solar cells is investigated. A numerical model is used to calculate the bound state energy levels and the absorption coefficient of transitions from the ground state to all other states in the conduction band. Comparing with the current state of the art, strong absorption enhancements are found for smaller quantum dots, as well as a better positioning of the energy levels, which is expected to reduce thermal carrier escape. It is concluded that reducing the quantum dot size can increase sub-bandgap photocurrent and improve voltage preservation.
Resumo:
We have analyzed by means of Rutherford backscattering spectrometry (RBS) the Ti lattice location and the degree of crystalline lattice recovery in heavily Ti implanted silicon layers subsequently pulsed laser melted (PLM). Theoretical studies have predicted that Ti should occupy interstitial sites in silicon for a metallic-intermediate band (IB) formation. The analysis of Ti lattice location after PLM processes is a crucial point to evaluate the IB formation that can be clarifyied by means of RBS measurements. After PLM, time-of-flight secondary ion mass spectrometry measurements show that the Ti concentration in the layers is well above the theoretical limit for IB formation. RBS measurements have shown a significant improvement of the lattice quality at the highest PLM energy density studied. The RBS channeling spectra reveals clearly that after PLM processes Ti impurities are mostly occupying interstitial lattice sites.