55 resultados para Giles, Buck


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se presenta un convertidor DC-DC buck de dos fases de alta velocidad adecuado para emplear en técnicas de linealización de amplificadores como ET (Envelope Tracking) o EER (Envelope Elimination and Restoration). El convertidor ha sido realizado con tecnología LDMOS y la técnica usada para controlarlo ha sido modulación PWM, creada mediante procesado digital y un generador de funciones. La potencia de salida es de hasta 125W de pico, con un rendimiento del 80%, un ancho de banda de hasta 2MHz y en las medidas de linealidad presenta una atenuación a los productos de intermodulación de tercer orden de más de 45 dBc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an interleaved multiphase buck converter with minimum time control strategy for envelope amplifiers in high efficiency RF power amplifiers. The solution of the envelope amplifier is to combine the proposed converter with a linear regulator in series. High system efficiency can be obtained through modulating the supply voltage of the envelope amplifier with the fast output voltage variation of the converter working with several particular duty cycles that achieve total ripple cancellation. The transient model for minimum time control is explained, and the calculation of transient times that are pre-calculated and inserted into a look-up table is presented. The filter design trade-off that limits capability of envelope modulation is also discussed. The experimental results verify the fast voltage transient obtained with a 4-phase buck prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an interleaved multiphase buck converter with minimum time control strategy for envelope amplifiers in high efficiency RF power amplifiers is proposed. The solution for the envelope amplifier is to combine the proposed converter with a linear regulator in series. High efficiency of envelope amplifier can be obtained through modulating the supply voltage of the linear regulator. Instead of tracking the envelope, the buck converter has discrete output voltage that corresponding to particular duty cycles which achieve total ripple cancellation. The transient model for minimum time control is explained, and the calculation of transient times that are pre-calculated and inserted into a lookup table is presented. The filter design trade-off that limits capability of envelope modulation is also discussed. The experimental results verify the fast voltage transient obtained with a 4-phase buck prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An EMI filter for a three-phase buck-type medium power pulse-width modulation rectifier is designed. This filter considers differential mode noise and complies with MIL-STD- 461E for the frequency range of 10kHz to 10MHz. In industrial applications, the frequency range of the standard starts at 150kHz and the designer typically uses a switching frequency of 28kHz because the fifth harmonic is out of the range. This approach is not valid for aircraft applications. In order to design the switching frequency in aircraft applications, the power losses in the semiconductors and the weight of the reactive components should be considered. The proposed design is based on a harmonic analysis of the rectifier input current and an analytical study of the input filter. The classical industrial design does not consider the inductive effect in the filter design because the grid frequency is 50/60Hz. However, in the aircraft applications, the grid frequency is 400Hz and the inductance cannot be neglected. The proposed design considers the inductance and the capacitance effect of the filter in order to obtain unitary power factor at full power. In the optimization process, several filters are designed for different switching frequencies of the converter. In addition, designs from single to five stages are considered. The power losses of the converter plus the EMI filter are estimated at these switching frequencies. Considering overall losses and minimal filter volume, the optimal switching frequency is selected

Relevância:

20.00% 20.00%

Publicador:

Resumo:

—In this paper, application of a new technological solution for power switches based on Gallium Nitride and a filter design methodology for high efficiency Envelope Amplifier in RF transmitters are proposed. Comparing to Si MOSFETs, GaN HEMTs can provide higher efficiency of the Envelope Amplifier, due to better Figure Of Merit (lower product of on- resistance and gate charge). Benefits of their application were verified through the experimental results. The goal of the filter design is to generate the envelope reference with the minimum possible distortion and to improve the efficiency of the Amplifier, obtaining the optimum trade-off between conduction and switching losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power amplifier supplied with constant supply voltage has very low efficiency in the transmitter. A DC-DC converter in series with a linear regulator can be used to obtain voltage modulation. Since this converter should be able to change the output voltage very fast, a multiphase buck converter with a minimum time control strategy is proposed. To modulate supply voltage of the envelope amplifier, the multiphase converter works with some particular duty cycle (i/n, i=1, 2 ... n, n is the number of phase) to generate discrete output voltages, and in these duty cycles the output current ripple can be completely cancelled. The transition times for the minimum time are pre-calculated and inserted in a look-up table. The theoretical background, the system model that is necessary in order to calculate the transition times and the experimental results obtained with a 4-phase buck prototype are given

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An EMI filter for a three-phase buck-type medium power pulse-width modulation rectifier is designed. This filter considers differential mode noise and complies with MIL-STD-461E for the frequency range of 10kHz to 10MHz. In industrial applications, the frequency range of the standard starts at 150kHz and the designer typically uses a switching frequency of 28kHz because the fifth harmonic is out of the range. This approach is not valid for aircraft applications. In order to design the switching frequency in aircraft applications, the power losses in the semiconductors and the weight of the reactive components should be considered. The proposed design is based on a harmonic analysis of the rectifier input current and an analytical study of the input filter. The classical industrial design does not consider the inductive effect in the filter design because the grid frequency is 50/60Hz. However, in the aircraft applications, the grid frequency is 400Hz and the inductance cannot be neglected. The proposed design considers the inductance and the capacitance effect of the filter in order to obtain unitary power factor at full power. In the optimization process, several filters are designed for different switching frequencies of the converter. In addition, designs from single to five stages are considered. The power losses of the converter plus the EMI filter are estimated at these switching frequencies. Considering overall losses and minimal filter volume, the optimal switching frequency is selected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, filter design methodology and application of GaN HEMTs for high efficiency Envelope Amplifier in RF transmitters are proposed. The main objectives of the filter design are generation of the envelope reference with the minimum possible distortion and high efficiency of the amplifier obtained by the optimum trade-off between conduction and switching losses. This optimum point was determined using power losses model for synchronous buck with sinusoidal output voltage and experimental results showed good correspondence with the model and verified the proposed methodology. On the other hand, comparing to Si MOSFETs, GaN HEMTs can provide higher efficiency of the envelope amplifier, due to superior conductivity and switching characteristics. Experimental results verified benefits of GaN devices comparing to the appliance of Si switching devices with very good Figure Of Merit, for this particular application

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse-width modulation is widely used to control electronic converters. One of the most topologies used for high DC voltage/low DC voltage conversion is the Buck converter. It is obtained as a second order system with a LC filter between the switching subsystem and the load. The use of a coil with an amorphous magnetic material core instead of air core lets design converters with smaller size. If high switching frequencies are used for obtaining high quality voltage output, the value of the auto inductance L is reduced throughout the time. Then, robust controllers are needed if the accuracy of the converter response must not be affected by auto inductance and load variations. This paper presents a robust controller for a Buck converter based on a state space feedback control system combined with an additional virtual space variable which minimizes the effects of the inductance and load variations when a not-toohigh switching frequency is applied. The system exhibits a null steady-state average error response for the entire range of parameter variations. Simulation results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El desarrollo de este Proyecto Fin de Carrera se ha enmarcado dentro del diseño e implementación de una plataforma, denominada Gauss, para la gestión del seguimiento de la calidad en las titulaciones de Grado y Máster de la Universidad Politécnica de Madrid (UPM). Esta aplicación ha sido desarrollada bajo el liderazgo del Vicerrectorado de Estructura Organizativa y Calidad (VEOC), con el apoyo del personal de la Unidad de Calidad de dicho Vicerrectorado y del Servicio de Planificación de Sistemas de Información (SPSI) del Vicerrectorado de Nuevas Tecnologías y Comunicación de la UPM, así como de los tutores del proyecto y otras personas que han formado parte del equipo de desarrollo a cargo del autor, por parte de la Facultad de Informática de la Universidad. El Proyecto se centra en el estudio del uso de las prácticas ágiles de desarrollo para la realización de los análisis de usabilidad y la gestión del diseño e implementación de la mencionada plataforma. Se pretende sentar las bases del uso de las prácticas ágiles dentro del proceso de diseño y estructuración de los análisis de usabilidad y de la implementación en proyectos en los que se realiza un diseño centrado en el usuario, donde la primera impresión del usuario debe ser positiva y la capacidad de retomar el uso de la plataforma desarrollada tras un largo tiempo no suponga un impedimento extra en su normal funcionamiento. El uso de las prácticas ágiles se ha aplicado tanto al desarrollo de la plataforma como a la gestión de los hitos alcanzables para que a lo largo de las diversas iteraciones el producto obtenido fuera lo más estable posible, desarrollando y evaluando diversas partes de la plataforma. Finalmente, se ha analizado el impacto que pueden tener este tipo de prácticas, sus puntos fuertes y débiles en este tipo de proyectos, así como posibles puntos de mejora y posibles líneas futuras de este proyecto. En el capítulo 1 se realiza una introducción al proyecto y se exponen sus objetivos. En el capítulo 2 se realiza un análisis detallado sobre el estado del arte, comentando los ciclos de vida tradicionales del software, las prácticas ágiles más destacadas, así como distintos conceptos relacionados con la usabilidad. En el capítulo 3 se analiza la problemática en este proyecto y se detallan las prácticas ágiles utilizadas. En el capítulo 4 se presentan las conclusiones del trabajo. En el capítulo 5 se proponen diversas líneas de trabajo futuras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is related to the improvement of the output impedance of the Buck converter by means of introducing an additional power path that virtually increases the output capacitance during transients. It is well known that in VRM applications, with wide load steps, voltage overshoots and undershoots may lead to undesired performance of the load. To solve this problem, high-bandwidth high-switching frequency power converters can be applied to reduce the transient time or a big output capacitor can be applied to reduce the output impedance. The first solution can degrade the efficiency by increasing switching losses of the MOSFETS, and the second solution is penalizing the cost and size of the output filter. The Output Impedance Correction Circuit (OICC), as presented here, is used to inject or extract a current n-1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. This feature allows the usage of a low frequency Buck converter with smaller capacitor but satisfying the dynamic requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to use the predictive control to take advantage of the future information in order to improve the reference tracking. The control attempts to increase the bandwidth of the conventional regulators by using the future information of the reference, which is supposed to be known in advance. A method for designing a controller is also proposed. A comparison in simulation with a conventional regulator is made controlling a four-phase Buck converter. Advantages and disadvantages are analyzed based on simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Envelope Tracking (ET) and Envelope Elimination and Restoration (EER) are two techniques that have been used as a solution for highly efficient linear RF Power Amplifiers (PA). In both techniques the most important part is a dc-dc converter called envelope amplifier that has to supply the RF PA with variable voltage. Besides high efficiency, its bandwidth is very important as well. Envelope amplifier based on parallel combination of a switching dc-dc converter and a linear regulator is an architecture that is widely used due to its simplicity. In this paper we discuss about theoretical limitations of this architecture regarding its efficiency and we demonstrate two possible way of its implementation. In order to derive the presented conclusions, a theoretical model of envelope amplifier's efficiency has been presented. Additionally, the benefits of the new emerging GaN technology for this application have been shown as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a behavioral-analytical hybrid loss model for a buck converter. The model has been designed for a wide operating frequency range up to 4MHz and a low power range (below 20W). It is focused on the switching losses obtained in the power MOSFETs. Main advantages of the model are the fast calculation time and a good accuracy. It has been validated by simulation and experimentally with one Ga, power transistor and two Si MOSFETs. Results show good agreement between measurements and the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is related to the improvement of the dynamic performance of the Buck converter by means of introducing an additional power path that virtually increase s the output capacitance during transients, thus improving the output impedance of the converter. It is well known that in VRM applications, with wide load steps, voltage overshoots and undershoots ma y lead to undesired performance of the load. To solve this problem, high-bandwidth high-switching frequency power converter s can be applied to reduce the transient time or a big output capacitor can be applied to reduce the output impedance. The first solution can degrade the efficiency by increasing switching losses of the MOSFETS, and the second solution is penalizing the cost and size of the output filter. The additional energy path, as presented here, is introduced with the Output Impedance Correction Circuit (OICC) based on the Controlled Current Source (CCS). The OICC is using CCS to inject or extract a current n - 1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. This feature allows the usage of a low frequency Buck converter with smaller capacitor but satisfying the dynamic requirements.